Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities
Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-07, Vol.10 (7), p.e0132848-e0132848 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0132848 |
---|---|
container_issue | 7 |
container_start_page | e0132848 |
container_title | PloS one |
container_volume | 10 |
creator | Kurogochi, Masaki Mori, Masako Osumi, Kenji Tojino, Mami Sugawara, Shu-Ichi Takashima, Shou Hirose, Yuriko Tsukimura, Wataru Mizuno, Mamoru Amano, Junko Matsuda, Akio Tomita, Masahiro Takayanagi, Atsushi Shoda, Shin-Ichiro Shirai, Takashi |
description | Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity. |
doi_str_mv | 10.1371/journal.pone.0132848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1698024667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_01cee135897a4ad7a120104af426bdf4</doaj_id><sourcerecordid>1699489008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-d17c83388fe88611e8771e7fc9c7a9a81df18b9e6cd57bf3834bef4590855c1e3</originalsourceid><addsrcrecordid>eNptkttu1DAQhiMEoqXwBggscVOk7mLHOTg3SNGWbldqhYQot5bjjHddJXZqZxfCa_EevAAvg7OHqkVcWLbG___NeDxR9JrgKaE5-XBr186IZtpZA1NMaMwS9iQ6JgWNJ1mM6dMH56Pohfe3GKeUZdnz6CgOQUwIPY7-zJtBWjBLbQAc1OjaGisbG8ioNL2ubK3Bo--6X6FL29olGLBrj0abMOj0mp6hOQ4rPkPC1KiM36Mbr80SCTRbQRvQP4dW9FqisuucFTJwxAbQuVYqJDQ9KpXSRvdjGmUdupC_f31ZLBZiy_smnBZVA4dihsk5dGDq0TiDplk3wqHZ0Nve_tBS9wMqZa83W9zL6JkSjYdX-_0kurn49HV2Obn6PF_MyquJTOOsn9Qkl4xSxhQwlhECLM8J5EoWMheFYKRWhFUFZLJO80pRRpMKVJIWmKWpJEBPorc7btdYz_f_4jnJCobjJMvyoFjsFLUVt7xzuhVu4FZovg1Yt-TChR41wDGRAISmrMhFIupckBgTnAiVxFlVqySwPu6zrasWahk64UTzCPr4xugVX9oNT1JCcjoCTvcAZ-_W4Hveai9DL8X2a8e6i4QVGLMgffeP9P-vS3Yq6az3DtR9MQTzcVYPLj7OKt_ParC9efiQe9NhOOlffqLrDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698024667</pqid></control><display><type>article</type><title>Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kurogochi, Masaki ; Mori, Masako ; Osumi, Kenji ; Tojino, Mami ; Sugawara, Shu-Ichi ; Takashima, Shou ; Hirose, Yuriko ; Tsukimura, Wataru ; Mizuno, Mamoru ; Amano, Junko ; Matsuda, Akio ; Tomita, Masahiro ; Takayanagi, Atsushi ; Shoda, Shin-Ichiro ; Shirai, Takashi</creator><creatorcontrib>Kurogochi, Masaki ; Mori, Masako ; Osumi, Kenji ; Tojino, Mami ; Sugawara, Shu-Ichi ; Takashima, Shou ; Hirose, Yuriko ; Tsukimura, Wataru ; Mizuno, Mamoru ; Amano, Junko ; Matsuda, Akio ; Tomita, Masahiro ; Takayanagi, Atsushi ; Shoda, Shin-Ichiro ; Shirai, Takashi</creatorcontrib><description>Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0132848</identifier><identifier>PMID: 26200113</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetylglucosaminidase - metabolism ; Affinity ; Antibodies, Monoclonal - chemistry ; Antibodies, Monoclonal - metabolism ; Antibody-Dependent Cell Cytotoxicity ; Bioengineering ; Cancer ; Constant region ; Cytotoxicity ; Enzymes ; ErbB-2 protein ; Genes ; Glycan ; Glycoproteins ; Glycosylation ; Humans ; Hydrolase ; Immunoglobulin Fc Fragments - metabolism ; Immunoglobulin G ; Immunoglobulins ; Laboratories ; Mannose ; Monoclonal antibodies ; N-glycans ; Organic chemistry ; Polysaccharides ; Polysaccharides - chemistry ; Toxicity ; Trastuzumab - chemistry ; Trastuzumab - metabolism</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0132848-e0132848</ispartof><rights>2015 Kurogochi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Kurogochi et al 2015 Kurogochi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-d17c83388fe88611e8771e7fc9c7a9a81df18b9e6cd57bf3834bef4590855c1e3</citedby><cites>FETCH-LOGICAL-c526t-d17c83388fe88611e8771e7fc9c7a9a81df18b9e6cd57bf3834bef4590855c1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511734/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4511734/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26200113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurogochi, Masaki</creatorcontrib><creatorcontrib>Mori, Masako</creatorcontrib><creatorcontrib>Osumi, Kenji</creatorcontrib><creatorcontrib>Tojino, Mami</creatorcontrib><creatorcontrib>Sugawara, Shu-Ichi</creatorcontrib><creatorcontrib>Takashima, Shou</creatorcontrib><creatorcontrib>Hirose, Yuriko</creatorcontrib><creatorcontrib>Tsukimura, Wataru</creatorcontrib><creatorcontrib>Mizuno, Mamoru</creatorcontrib><creatorcontrib>Amano, Junko</creatorcontrib><creatorcontrib>Matsuda, Akio</creatorcontrib><creatorcontrib>Tomita, Masahiro</creatorcontrib><creatorcontrib>Takayanagi, Atsushi</creatorcontrib><creatorcontrib>Shoda, Shin-Ichiro</creatorcontrib><creatorcontrib>Shirai, Takashi</creatorcontrib><title>Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.</description><subject>Acetylglucosaminidase - metabolism</subject><subject>Affinity</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Antibody-Dependent Cell Cytotoxicity</subject><subject>Bioengineering</subject><subject>Cancer</subject><subject>Constant region</subject><subject>Cytotoxicity</subject><subject>Enzymes</subject><subject>ErbB-2 protein</subject><subject>Genes</subject><subject>Glycan</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Hydrolase</subject><subject>Immunoglobulin Fc Fragments - metabolism</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulins</subject><subject>Laboratories</subject><subject>Mannose</subject><subject>Monoclonal antibodies</subject><subject>N-glycans</subject><subject>Organic chemistry</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Toxicity</subject><subject>Trastuzumab - chemistry</subject><subject>Trastuzumab - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkttu1DAQhiMEoqXwBggscVOk7mLHOTg3SNGWbldqhYQot5bjjHddJXZqZxfCa_EevAAvg7OHqkVcWLbG___NeDxR9JrgKaE5-XBr186IZtpZA1NMaMwS9iQ6JgWNJ1mM6dMH56Pohfe3GKeUZdnz6CgOQUwIPY7-zJtBWjBLbQAc1OjaGisbG8ioNL2ubK3Bo--6X6FL29olGLBrj0abMOj0mp6hOQ4rPkPC1KiM36Mbr80SCTRbQRvQP4dW9FqisuucFTJwxAbQuVYqJDQ9KpXSRvdjGmUdupC_f31ZLBZiy_smnBZVA4dihsk5dGDq0TiDplk3wqHZ0Nve_tBS9wMqZa83W9zL6JkSjYdX-_0kurn49HV2Obn6PF_MyquJTOOsn9Qkl4xSxhQwlhECLM8J5EoWMheFYKRWhFUFZLJO80pRRpMKVJIWmKWpJEBPorc7btdYz_f_4jnJCobjJMvyoFjsFLUVt7xzuhVu4FZovg1Yt-TChR41wDGRAISmrMhFIupckBgTnAiVxFlVqySwPu6zrasWahk64UTzCPr4xugVX9oNT1JCcjoCTvcAZ-_W4Hveai9DL8X2a8e6i4QVGLMgffeP9P-vS3Yq6az3DtR9MQTzcVYPLj7OKt_ParC9efiQe9NhOOlffqLrDA</recordid><startdate>20150722</startdate><enddate>20150722</enddate><creator>Kurogochi, Masaki</creator><creator>Mori, Masako</creator><creator>Osumi, Kenji</creator><creator>Tojino, Mami</creator><creator>Sugawara, Shu-Ichi</creator><creator>Takashima, Shou</creator><creator>Hirose, Yuriko</creator><creator>Tsukimura, Wataru</creator><creator>Mizuno, Mamoru</creator><creator>Amano, Junko</creator><creator>Matsuda, Akio</creator><creator>Tomita, Masahiro</creator><creator>Takayanagi, Atsushi</creator><creator>Shoda, Shin-Ichiro</creator><creator>Shirai, Takashi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150722</creationdate><title>Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities</title><author>Kurogochi, Masaki ; Mori, Masako ; Osumi, Kenji ; Tojino, Mami ; Sugawara, Shu-Ichi ; Takashima, Shou ; Hirose, Yuriko ; Tsukimura, Wataru ; Mizuno, Mamoru ; Amano, Junko ; Matsuda, Akio ; Tomita, Masahiro ; Takayanagi, Atsushi ; Shoda, Shin-Ichiro ; Shirai, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-d17c83388fe88611e8771e7fc9c7a9a81df18b9e6cd57bf3834bef4590855c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetylglucosaminidase - metabolism</topic><topic>Affinity</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Antibody-Dependent Cell Cytotoxicity</topic><topic>Bioengineering</topic><topic>Cancer</topic><topic>Constant region</topic><topic>Cytotoxicity</topic><topic>Enzymes</topic><topic>ErbB-2 protein</topic><topic>Genes</topic><topic>Glycan</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Hydrolase</topic><topic>Immunoglobulin Fc Fragments - metabolism</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulins</topic><topic>Laboratories</topic><topic>Mannose</topic><topic>Monoclonal antibodies</topic><topic>N-glycans</topic><topic>Organic chemistry</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Toxicity</topic><topic>Trastuzumab - chemistry</topic><topic>Trastuzumab - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurogochi, Masaki</creatorcontrib><creatorcontrib>Mori, Masako</creatorcontrib><creatorcontrib>Osumi, Kenji</creatorcontrib><creatorcontrib>Tojino, Mami</creatorcontrib><creatorcontrib>Sugawara, Shu-Ichi</creatorcontrib><creatorcontrib>Takashima, Shou</creatorcontrib><creatorcontrib>Hirose, Yuriko</creatorcontrib><creatorcontrib>Tsukimura, Wataru</creatorcontrib><creatorcontrib>Mizuno, Mamoru</creatorcontrib><creatorcontrib>Amano, Junko</creatorcontrib><creatorcontrib>Matsuda, Akio</creatorcontrib><creatorcontrib>Tomita, Masahiro</creatorcontrib><creatorcontrib>Takayanagi, Atsushi</creatorcontrib><creatorcontrib>Shoda, Shin-Ichiro</creatorcontrib><creatorcontrib>Shirai, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurogochi, Masaki</au><au>Mori, Masako</au><au>Osumi, Kenji</au><au>Tojino, Mami</au><au>Sugawara, Shu-Ichi</au><au>Takashima, Shou</au><au>Hirose, Yuriko</au><au>Tsukimura, Wataru</au><au>Mizuno, Mamoru</au><au>Amano, Junko</au><au>Matsuda, Akio</au><au>Tomita, Masahiro</au><au>Takayanagi, Atsushi</au><au>Shoda, Shin-Ichiro</au><au>Shirai, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-22</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0132848</spage><epage>e0132848</epage><pages>e0132848-e0132848</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26200113</pmid><doi>10.1371/journal.pone.0132848</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-07, Vol.10 (7), p.e0132848-e0132848 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1698024667 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acetylglucosaminidase - metabolism Affinity Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - metabolism Antibody-Dependent Cell Cytotoxicity Bioengineering Cancer Constant region Cytotoxicity Enzymes ErbB-2 protein Genes Glycan Glycoproteins Glycosylation Humans Hydrolase Immunoglobulin Fc Fragments - metabolism Immunoglobulin G Immunoglobulins Laboratories Mannose Monoclonal antibodies N-glycans Organic chemistry Polysaccharides Polysaccharides - chemistry Toxicity Trastuzumab - chemistry Trastuzumab - metabolism |
title | Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycoengineered%20Monoclonal%20Antibodies%20with%20Homogeneous%20Glycan%20(M3,%20G0,%20G2,%20and%20A2)%20Using%20a%20Chemoenzymatic%20Approach%20Have%20Different%20Affinities%20for%20Fc%CE%B3RIIIa%20and%20Variable%20Antibody-Dependent%20Cellular%20Cytotoxicity%20Activities&rft.jtitle=PloS%20one&rft.au=Kurogochi,%20Masaki&rft.date=2015-07-22&rft.volume=10&rft.issue=7&rft.spage=e0132848&rft.epage=e0132848&rft.pages=e0132848-e0132848&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0132848&rft_dat=%3Cproquest_plos_%3E1699489008%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698024667&rft_id=info:pmid/26200113&rft_doaj_id=oai_doaj_org_article_01cee135897a4ad7a120104af426bdf4&rfr_iscdi=true |