Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U.S. Cities
Dynamic social media content, such as Twitter messages, can be used to examine individuals' beliefs and perceptions. By analyzing Twitter messages, this study examines how Twitter users exchanged and recognized toponyms (city names) for different cities in the United States. The frequency and v...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-07, Vol.10 (7), p.e0132464-e0132464 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0132464 |
---|---|
container_issue | 7 |
container_start_page | e0132464 |
container_title | PloS one |
container_volume | 10 |
creator | Han, Su Yeon Tsou, Ming-Hsiang Clarke, Keith C |
description | Dynamic social media content, such as Twitter messages, can be used to examine individuals' beliefs and perceptions. By analyzing Twitter messages, this study examines how Twitter users exchanged and recognized toponyms (city names) for different cities in the United States. The frequency and variety of city names found in their online conversations were used to identify the unique spatiotemporal patterns of "geographical awareness" for Twitter users. A new analytic method, Knowledge Discovery in Cyberspace for Geographical Awareness (KDCGA), is introduced to help identify the dynamic spatiotemporal patterns of geographic awareness among social media conversations. Twitter data were collected across 50 U.S. cities. Thousands of city names around the world were extracted from a large volume of Twitter messages (over 5 million tweets) by using the Twitter Application Programming Interface (APIs) and Python language computer programs. The percentages of distant city names (cities located in distant states or other countries far away from the locations of Twitter users) were used to estimate the level of global geographical awareness for Twitter users in each U.S. city. A Global awareness index (GAI) was developed to quantify the level of geographical awareness of Twitter users from within the same city. Our findings are that: (1) the level of geographical awareness varies depending on when and where Twitter messages are posted, yet Twitter users from big cities are more aware of the names of international cities or distant US cities than users from mid-size cities; (2) Twitter users have an increased awareness of other city names far away from their home city during holiday seasons; and (3) Twitter users are more aware of nearby city names than distant city names, and more aware of big city names rather than small city names. |
doi_str_mv | 10.1371/journal.pone.0132464 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1695996067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421593525</galeid><doaj_id>oai_doaj_org_article_b662f2a2876b4ccda26fbb33c250cc3d</doaj_id><sourcerecordid>A421593525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6aa9c717d1bc37d91aff9d304a0aaaf22a8c0ac895828a19c9e078b2800f70b23</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0eKPxIlvQFUZpVKlCbbu1jpxnNaTG3e2s7J_j7umU4t2gXxh6_h532Mf-yTJW4yGmBb4y43tXAtmuLatGiJMScayZ8kp5pQMGEH0-cH6JHnl_Q1COS0Ze5mcEIZZwTNymrjvNp0YW4FJxzpo5dPzFiqj9sFrrTb-Wzr3ul2kVxsdgnJpsOmvDtqgm_s0LFU6U3fKpLZJJ8ouHKyXWkbpaANOtcr77c58eDnsM7xOXjRgvHrTz2fJ_Mf51fjnYHYxmY5Hs4FknIQBA-CywEWNK0mLmmNoGl5TlAECgIYQKCUCWfK8JCVgLrlCRVmREqGmQBWhZ8n7ne_aWC_6cnmBGc85Z4gVkZjuiNrCjVg7vQJ3Lyxo8RCwbiHABS2NEhVjpCFAyoJVmZQ1ENZUFaWS5EhKWkevr322rlqpWqo2ODBHpsc7rV6Khb0TWR7fJefR4FNv4Oxtp3wQK-2lMgZaZbuHczNWUobLiH74B336dj21gHgB3TY25pVbUzHKCI4pc5JHavgEFUetVlrGv9XoGD8SfD4SRCaoP2EBnfdievn7_9mL62P24wG7VGDC0lvTBW1bfwxmO1A6671TzWORMRLb1thXQ2xbQ_StEWXvDh_oUbTvBfoX7NMIUw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695996067</pqid></control><display><type>article</type><title>Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U.S. Cities</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Han, Su Yeon ; Tsou, Ming-Hsiang ; Clarke, Keith C</creator><contributor>Hernandez Montoya, Alejandro Raul</contributor><creatorcontrib>Han, Su Yeon ; Tsou, Ming-Hsiang ; Clarke, Keith C ; Hernandez Montoya, Alejandro Raul</creatorcontrib><description>Dynamic social media content, such as Twitter messages, can be used to examine individuals' beliefs and perceptions. By analyzing Twitter messages, this study examines how Twitter users exchanged and recognized toponyms (city names) for different cities in the United States. The frequency and variety of city names found in their online conversations were used to identify the unique spatiotemporal patterns of "geographical awareness" for Twitter users. A new analytic method, Knowledge Discovery in Cyberspace for Geographical Awareness (KDCGA), is introduced to help identify the dynamic spatiotemporal patterns of geographic awareness among social media conversations. Twitter data were collected across 50 U.S. cities. Thousands of city names around the world were extracted from a large volume of Twitter messages (over 5 million tweets) by using the Twitter Application Programming Interface (APIs) and Python language computer programs. The percentages of distant city names (cities located in distant states or other countries far away from the locations of Twitter users) were used to estimate the level of global geographical awareness for Twitter users in each U.S. city. A Global awareness index (GAI) was developed to quantify the level of geographical awareness of Twitter users from within the same city. Our findings are that: (1) the level of geographical awareness varies depending on when and where Twitter messages are posted, yet Twitter users from big cities are more aware of the names of international cities or distant US cities than users from mid-size cities; (2) Twitter users have an increased awareness of other city names far away from their home city during holiday seasons; and (3) Twitter users are more aware of nearby city names than distant city names, and more aware of big city names rather than small city names.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0132464</identifier><identifier>PMID: 26167942</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Awareness ; Big Data ; Cartography ; Cities ; Cities - statistics & numerical data ; Communication ; Computer programs ; Data mining ; Data processing ; Digital media ; Geodemographics ; Geographic information science ; Geography ; Global positioning systems ; Globalization ; GPS ; Human geography ; Humans ; International conferences ; Internationality ; Internet ; Messages ; Models, Statistical ; Names ; Programming languages ; Securities markets ; Social Media - statistics & numerical data ; Social networks ; Social research ; Software ; Stock exchanges ; Studies ; United States</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0132464-e0132464</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Han et al 2015 Han et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6aa9c717d1bc37d91aff9d304a0aaaf22a8c0ac895828a19c9e078b2800f70b23</citedby><cites>FETCH-LOGICAL-c692t-6aa9c717d1bc37d91aff9d304a0aaaf22a8c0ac895828a19c9e078b2800f70b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500559/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500559/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26167942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hernandez Montoya, Alejandro Raul</contributor><creatorcontrib>Han, Su Yeon</creatorcontrib><creatorcontrib>Tsou, Ming-Hsiang</creatorcontrib><creatorcontrib>Clarke, Keith C</creatorcontrib><title>Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U.S. Cities</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Dynamic social media content, such as Twitter messages, can be used to examine individuals' beliefs and perceptions. By analyzing Twitter messages, this study examines how Twitter users exchanged and recognized toponyms (city names) for different cities in the United States. The frequency and variety of city names found in their online conversations were used to identify the unique spatiotemporal patterns of "geographical awareness" for Twitter users. A new analytic method, Knowledge Discovery in Cyberspace for Geographical Awareness (KDCGA), is introduced to help identify the dynamic spatiotemporal patterns of geographic awareness among social media conversations. Twitter data were collected across 50 U.S. cities. Thousands of city names around the world were extracted from a large volume of Twitter messages (over 5 million tweets) by using the Twitter Application Programming Interface (APIs) and Python language computer programs. The percentages of distant city names (cities located in distant states or other countries far away from the locations of Twitter users) were used to estimate the level of global geographical awareness for Twitter users in each U.S. city. A Global awareness index (GAI) was developed to quantify the level of geographical awareness of Twitter users from within the same city. Our findings are that: (1) the level of geographical awareness varies depending on when and where Twitter messages are posted, yet Twitter users from big cities are more aware of the names of international cities or distant US cities than users from mid-size cities; (2) Twitter users have an increased awareness of other city names far away from their home city during holiday seasons; and (3) Twitter users are more aware of nearby city names than distant city names, and more aware of big city names rather than small city names.</description><subject>Awareness</subject><subject>Big Data</subject><subject>Cartography</subject><subject>Cities</subject><subject>Cities - statistics & numerical data</subject><subject>Communication</subject><subject>Computer programs</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Digital media</subject><subject>Geodemographics</subject><subject>Geographic information science</subject><subject>Geography</subject><subject>Global positioning systems</subject><subject>Globalization</subject><subject>GPS</subject><subject>Human geography</subject><subject>Humans</subject><subject>International conferences</subject><subject>Internationality</subject><subject>Internet</subject><subject>Messages</subject><subject>Models, Statistical</subject><subject>Names</subject><subject>Programming languages</subject><subject>Securities markets</subject><subject>Social Media - statistics & numerical data</subject><subject>Social networks</subject><subject>Social research</subject><subject>Software</subject><subject>Stock exchanges</subject><subject>Studies</subject><subject>United States</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJw0eKPxIlvQFUZpVKlCbbu1jpxnNaTG3e2s7J_j7umU4t2gXxh6_h532Mf-yTJW4yGmBb4y43tXAtmuLatGiJMScayZ8kp5pQMGEH0-cH6JHnl_Q1COS0Ze5mcEIZZwTNymrjvNp0YW4FJxzpo5dPzFiqj9sFrrTb-Wzr3ul2kVxsdgnJpsOmvDtqgm_s0LFU6U3fKpLZJJ8ouHKyXWkbpaANOtcr77c58eDnsM7xOXjRgvHrTz2fJ_Mf51fjnYHYxmY5Hs4FknIQBA-CywEWNK0mLmmNoGl5TlAECgIYQKCUCWfK8JCVgLrlCRVmREqGmQBWhZ8n7ne_aWC_6cnmBGc85Z4gVkZjuiNrCjVg7vQJ3Lyxo8RCwbiHABS2NEhVjpCFAyoJVmZQ1ENZUFaWS5EhKWkevr322rlqpWqo2ODBHpsc7rV6Khb0TWR7fJefR4FNv4Oxtp3wQK-2lMgZaZbuHczNWUobLiH74B336dj21gHgB3TY25pVbUzHKCI4pc5JHavgEFUetVlrGv9XoGD8SfD4SRCaoP2EBnfdievn7_9mL62P24wG7VGDC0lvTBW1bfwxmO1A6671TzWORMRLb1thXQ2xbQ_StEWXvDh_oUbTvBfoX7NMIUw</recordid><startdate>20150713</startdate><enddate>20150713</enddate><creator>Han, Su Yeon</creator><creator>Tsou, Ming-Hsiang</creator><creator>Clarke, Keith C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150713</creationdate><title>Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U.S. Cities</title><author>Han, Su Yeon ; Tsou, Ming-Hsiang ; Clarke, Keith C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6aa9c717d1bc37d91aff9d304a0aaaf22a8c0ac895828a19c9e078b2800f70b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Awareness</topic><topic>Big Data</topic><topic>Cartography</topic><topic>Cities</topic><topic>Cities - statistics & numerical data</topic><topic>Communication</topic><topic>Computer programs</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Digital media</topic><topic>Geodemographics</topic><topic>Geographic information science</topic><topic>Geography</topic><topic>Global positioning systems</topic><topic>Globalization</topic><topic>GPS</topic><topic>Human geography</topic><topic>Humans</topic><topic>International conferences</topic><topic>Internationality</topic><topic>Internet</topic><topic>Messages</topic><topic>Models, Statistical</topic><topic>Names</topic><topic>Programming languages</topic><topic>Securities markets</topic><topic>Social Media - statistics & numerical data</topic><topic>Social networks</topic><topic>Social research</topic><topic>Software</topic><topic>Stock exchanges</topic><topic>Studies</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Su Yeon</creatorcontrib><creatorcontrib>Tsou, Ming-Hsiang</creatorcontrib><creatorcontrib>Clarke, Keith C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Proquest Entrepreneurship</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Su Yeon</au><au>Tsou, Ming-Hsiang</au><au>Clarke, Keith C</au><au>Hernandez Montoya, Alejandro Raul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U.S. Cities</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-13</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0132464</spage><epage>e0132464</epage><pages>e0132464-e0132464</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Dynamic social media content, such as Twitter messages, can be used to examine individuals' beliefs and perceptions. By analyzing Twitter messages, this study examines how Twitter users exchanged and recognized toponyms (city names) for different cities in the United States. The frequency and variety of city names found in their online conversations were used to identify the unique spatiotemporal patterns of "geographical awareness" for Twitter users. A new analytic method, Knowledge Discovery in Cyberspace for Geographical Awareness (KDCGA), is introduced to help identify the dynamic spatiotemporal patterns of geographic awareness among social media conversations. Twitter data were collected across 50 U.S. cities. Thousands of city names around the world were extracted from a large volume of Twitter messages (over 5 million tweets) by using the Twitter Application Programming Interface (APIs) and Python language computer programs. The percentages of distant city names (cities located in distant states or other countries far away from the locations of Twitter users) were used to estimate the level of global geographical awareness for Twitter users in each U.S. city. A Global awareness index (GAI) was developed to quantify the level of geographical awareness of Twitter users from within the same city. Our findings are that: (1) the level of geographical awareness varies depending on when and where Twitter messages are posted, yet Twitter users from big cities are more aware of the names of international cities or distant US cities than users from mid-size cities; (2) Twitter users have an increased awareness of other city names far away from their home city during holiday seasons; and (3) Twitter users are more aware of nearby city names than distant city names, and more aware of big city names rather than small city names.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26167942</pmid><doi>10.1371/journal.pone.0132464</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-07, Vol.10 (7), p.e0132464-e0132464 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1695996067 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Awareness Big Data Cartography Cities Cities - statistics & numerical data Communication Computer programs Data mining Data processing Digital media Geodemographics Geographic information science Geography Global positioning systems Globalization GPS Human geography Humans International conferences Internationality Internet Messages Models, Statistical Names Programming languages Securities markets Social Media - statistics & numerical data Social networks Social research Software Stock exchanges Studies United States |
title | Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U.S. Cities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20Global%20Cities%20Enable%20Global%20Views?%20Using%20Twitter%20to%20Quantify%20the%20Level%20of%20Geographical%20Awareness%20of%20U.S.%20Cities&rft.jtitle=PloS%20one&rft.au=Han,%20Su%20Yeon&rft.date=2015-07-13&rft.volume=10&rft.issue=7&rft.spage=e0132464&rft.epage=e0132464&rft.pages=e0132464-e0132464&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0132464&rft_dat=%3Cgale_plos_%3EA421593525%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695996067&rft_id=info:pmid/26167942&rft_galeid=A421593525&rft_doaj_id=oai_doaj_org_article_b662f2a2876b4ccda26fbb33c250cc3d&rfr_iscdi=true |