Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-07, Vol.10 (7), p.e0132159-e0132159
Hauptverfasser: Caron, Ilaria, Micotti, Edoardo, Paladini, Alessandra, Merlino, Giuseppe, Plebani, Laura, Forloni, Gianluigi, Modo, Michel, Bendotti, Caterina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0132159
container_issue 7
container_start_page e0132159
container_title PloS one
container_volume 10
creator Caron, Ilaria
Micotti, Edoardo
Paladini, Alessandra
Merlino, Giuseppe
Plebani, Laura
Forloni, Gianluigi
Modo, Michel
Bendotti, Caterina
description Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.
doi_str_mv 10.1371/journal.pone.0132159
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1692759878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A420144622</galeid><doaj_id>oai_doaj_org_article_0c73b335bac64adcb66558a7a874ba8f</doaj_id><sourcerecordid>A420144622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2349b59e591eeb08bb6f7efa6b2aa129098843ebeb743ca2c4b3f899bf1405953</originalsourceid><addsrcrecordid>eNqNk81u1DAQgCMEoqXwBggiISE47BL_xEkuSNXy05VaVWoLV2vsnWRdOfZiewt9Bx4aL91WXdQD8iGW_c3nzNhTFC9JNSWsIR8u_To4sNOVdzitCKOk7h4V-6RjdCJoxR7fm-8Vz2K8rKqatUI8LfaoyLyoxX7xe-bHFQRI5grLExgcJqPLM4zegdNYzkcYjBtKcIvyyMTkV5CW3vrBaLDlzIeAFhLG0rjy4qcvz08_kfIigIsDumw68euYxX6BNpa-Lw_Ha5-CXy3z3nEODNlyri0GH018XjzpwUZ8sf0eFN--fL6YHU2OT7_OZ4fHEy06miaU8U7VHdYdQVRVq5ToG-xBKApAaFd1bcsZKlQNZxqo5or1bdepnvCq7mp2ULy-8a6sj3JbyChJtjd11zZtJuY3xMLDpVwFM0K4lh6M_LvgwyAh5EpZlJVumGKsVqAFh4VWQtR1Cw20DVfQ9tn1cXvaWo240OhSznpHurvjzFIO_kpynvNoqix4txUE_2ONMcnRRI3WgsNc3s1_s4aKltOMvvkHfTi7LTVATsC4Pl8J6I1UHnJaEc4F3bimD1B5LHA0Or-63uT1nYD3OwGZSfgrDbCOUc7Pz_6fPf2-y769xy4RbFpGb9fJeBd3QX4D6vycYsD-rsikkpumua2G3DSN3DZNDnt1_4Lugm67hP0BVZ8Teg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692759878</pqid></control><display><type>article</type><title>Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Caron, Ilaria ; Micotti, Edoardo ; Paladini, Alessandra ; Merlino, Giuseppe ; Plebani, Laura ; Forloni, Gianluigi ; Modo, Michel ; Bendotti, Caterina</creator><contributor>Grierson, Andrew James</contributor><creatorcontrib>Caron, Ilaria ; Micotti, Edoardo ; Paladini, Alessandra ; Merlino, Giuseppe ; Plebani, Laura ; Forloni, Gianluigi ; Modo, Michel ; Bendotti, Caterina ; Grierson, Andrew James</creatorcontrib><description>Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0132159</identifier><identifier>PMID: 26132656</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Substitution ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - pathology ; Animal models ; Animals ; Axons ; Axons - pathology ; Bioindicators ; Biomarkers ; Brain stem ; Brain Stem - pathology ; Comparative analysis ; Degeneration ; Diffusion Tensor Imaging ; Disease Progression ; Feasibility studies ; Genetic engineering ; Hand Strength ; Histology ; Histopathology ; Humans ; Lumbosacral Region ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Motor Neurons - pathology ; Motor nuclei ; Mutation, Missense ; Neurodegeneration ; Neurosciences ; NMR ; Nuclear magnetic resonance ; Nuclei ; Point Mutation ; Random Allocation ; Recombinant Proteins - genetics ; Resonance ; Rodents ; Skull ; Spinal cord ; Spinal Cord - pathology ; Substantia alba ; Superoxide dismutase ; Superoxide Dismutase - genetics ; Superoxide Dismutase-1 ; Transgenic mice ; Vacuoles - ultrastructure ; White Matter - pathology</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0132159-e0132159</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Caron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Caron et al 2015 Caron et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2349b59e591eeb08bb6f7efa6b2aa129098843ebeb743ca2c4b3f899bf1405953</citedby><cites>FETCH-LOGICAL-c692t-2349b59e591eeb08bb6f7efa6b2aa129098843ebeb743ca2c4b3f899bf1405953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488470/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488470/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26132656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Grierson, Andrew James</contributor><creatorcontrib>Caron, Ilaria</creatorcontrib><creatorcontrib>Micotti, Edoardo</creatorcontrib><creatorcontrib>Paladini, Alessandra</creatorcontrib><creatorcontrib>Merlino, Giuseppe</creatorcontrib><creatorcontrib>Plebani, Laura</creatorcontrib><creatorcontrib>Forloni, Gianluigi</creatorcontrib><creatorcontrib>Modo, Michel</creatorcontrib><creatorcontrib>Bendotti, Caterina</creatorcontrib><title>Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.</description><subject>Amino Acid Substitution</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Animal models</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - pathology</subject><subject>Bioindicators</subject><subject>Biomarkers</subject><subject>Brain stem</subject><subject>Brain Stem - pathology</subject><subject>Comparative analysis</subject><subject>Degeneration</subject><subject>Diffusion Tensor Imaging</subject><subject>Disease Progression</subject><subject>Feasibility studies</subject><subject>Genetic engineering</subject><subject>Hand Strength</subject><subject>Histology</subject><subject>Histopathology</subject><subject>Humans</subject><subject>Lumbosacral Region</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Motor Neurons - pathology</subject><subject>Motor nuclei</subject><subject>Mutation, Missense</subject><subject>Neurodegeneration</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclei</subject><subject>Point Mutation</subject><subject>Random Allocation</subject><subject>Recombinant Proteins - genetics</subject><subject>Resonance</subject><subject>Rodents</subject><subject>Skull</subject><subject>Spinal cord</subject><subject>Spinal Cord - pathology</subject><subject>Substantia alba</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase-1</subject><subject>Transgenic mice</subject><subject>Vacuoles - ultrastructure</subject><subject>White Matter - pathology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk81u1DAQgCMEoqXwBggiISE47BL_xEkuSNXy05VaVWoLV2vsnWRdOfZiewt9Bx4aL91WXdQD8iGW_c3nzNhTFC9JNSWsIR8u_To4sNOVdzitCKOk7h4V-6RjdCJoxR7fm-8Vz2K8rKqatUI8LfaoyLyoxX7xe-bHFQRI5grLExgcJqPLM4zegdNYzkcYjBtKcIvyyMTkV5CW3vrBaLDlzIeAFhLG0rjy4qcvz08_kfIigIsDumw68euYxX6BNpa-Lw_Ha5-CXy3z3nEODNlyri0GH018XjzpwUZ8sf0eFN--fL6YHU2OT7_OZ4fHEy06miaU8U7VHdYdQVRVq5ToG-xBKApAaFd1bcsZKlQNZxqo5or1bdepnvCq7mp2ULy-8a6sj3JbyChJtjd11zZtJuY3xMLDpVwFM0K4lh6M_LvgwyAh5EpZlJVumGKsVqAFh4VWQtR1Cw20DVfQ9tn1cXvaWo240OhSznpHurvjzFIO_kpynvNoqix4txUE_2ONMcnRRI3WgsNc3s1_s4aKltOMvvkHfTi7LTVATsC4Pl8J6I1UHnJaEc4F3bimD1B5LHA0Or-63uT1nYD3OwGZSfgrDbCOUc7Pz_6fPf2-y769xy4RbFpGb9fJeBd3QX4D6vycYsD-rsikkpumua2G3DSN3DZNDnt1_4Lugm67hP0BVZ8Teg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Caron, Ilaria</creator><creator>Micotti, Edoardo</creator><creator>Paladini, Alessandra</creator><creator>Merlino, Giuseppe</creator><creator>Plebani, Laura</creator><creator>Forloni, Gianluigi</creator><creator>Modo, Michel</creator><creator>Bendotti, Caterina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150701</creationdate><title>Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis</title><author>Caron, Ilaria ; Micotti, Edoardo ; Paladini, Alessandra ; Merlino, Giuseppe ; Plebani, Laura ; Forloni, Gianluigi ; Modo, Michel ; Bendotti, Caterina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2349b59e591eeb08bb6f7efa6b2aa129098843ebeb743ca2c4b3f899bf1405953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Substitution</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Animal models</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - pathology</topic><topic>Bioindicators</topic><topic>Biomarkers</topic><topic>Brain stem</topic><topic>Brain Stem - pathology</topic><topic>Comparative analysis</topic><topic>Degeneration</topic><topic>Diffusion Tensor Imaging</topic><topic>Disease Progression</topic><topic>Feasibility studies</topic><topic>Genetic engineering</topic><topic>Hand Strength</topic><topic>Histology</topic><topic>Histopathology</topic><topic>Humans</topic><topic>Lumbosacral Region</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Motor Neurons - pathology</topic><topic>Motor nuclei</topic><topic>Mutation, Missense</topic><topic>Neurodegeneration</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclei</topic><topic>Point Mutation</topic><topic>Random Allocation</topic><topic>Recombinant Proteins - genetics</topic><topic>Resonance</topic><topic>Rodents</topic><topic>Skull</topic><topic>Spinal cord</topic><topic>Spinal Cord - pathology</topic><topic>Substantia alba</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase-1</topic><topic>Transgenic mice</topic><topic>Vacuoles - ultrastructure</topic><topic>White Matter - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caron, Ilaria</creatorcontrib><creatorcontrib>Micotti, Edoardo</creatorcontrib><creatorcontrib>Paladini, Alessandra</creatorcontrib><creatorcontrib>Merlino, Giuseppe</creatorcontrib><creatorcontrib>Plebani, Laura</creatorcontrib><creatorcontrib>Forloni, Gianluigi</creatorcontrib><creatorcontrib>Modo, Michel</creatorcontrib><creatorcontrib>Bendotti, Caterina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caron, Ilaria</au><au>Micotti, Edoardo</au><au>Paladini, Alessandra</au><au>Merlino, Giuseppe</au><au>Plebani, Laura</au><au>Forloni, Gianluigi</au><au>Modo, Michel</au><au>Bendotti, Caterina</au><au>Grierson, Andrew James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0132159</spage><epage>e0132159</epage><pages>e0132159-e0132159</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26132656</pmid><doi>10.1371/journal.pone.0132159</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-07, Vol.10 (7), p.e0132159-e0132159
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1692759878
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Substitution
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - pathology
Animal models
Animals
Axons
Axons - pathology
Bioindicators
Biomarkers
Brain stem
Brain Stem - pathology
Comparative analysis
Degeneration
Diffusion Tensor Imaging
Disease Progression
Feasibility studies
Genetic engineering
Hand Strength
Histology
Histopathology
Humans
Lumbosacral Region
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mice
Mice, 129 Strain
Mice, Inbred C57BL
Mice, Transgenic
Motor Neurons - pathology
Motor nuclei
Mutation, Missense
Neurodegeneration
Neurosciences
NMR
Nuclear magnetic resonance
Nuclei
Point Mutation
Random Allocation
Recombinant Proteins - genetics
Resonance
Rodents
Skull
Spinal cord
Spinal Cord - pathology
Substantia alba
Superoxide dismutase
Superoxide Dismutase - genetics
Superoxide Dismutase-1
Transgenic mice
Vacuoles - ultrastructure
White Matter - pathology
title Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Magnetic%20Resonance%20Imaging%20and%20Histopathological%20Correlates%20in%20Two%20SOD1%20Transgenic%20Mouse%20Models%20of%20Amyotrophic%20Lateral%20Sclerosis&rft.jtitle=PloS%20one&rft.au=Caron,%20Ilaria&rft.date=2015-07-01&rft.volume=10&rft.issue=7&rft.spage=e0132159&rft.epage=e0132159&rft.pages=e0132159-e0132159&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0132159&rft_dat=%3Cgale_plos_%3EA420144622%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692759878&rft_id=info:pmid/26132656&rft_galeid=A420144622&rft_doaj_id=oai_doaj_org_article_0c73b335bac64adcb66558a7a874ba8f&rfr_iscdi=true