Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis
Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-07, Vol.10 (7), p.e0132159-e0132159 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0132159 |
---|---|
container_issue | 7 |
container_start_page | e0132159 |
container_title | PloS one |
container_volume | 10 |
creator | Caron, Ilaria Micotti, Edoardo Paladini, Alessandra Merlino, Giuseppe Plebani, Laura Forloni, Gianluigi Modo, Michel Bendotti, Caterina |
description | Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies. |
doi_str_mv | 10.1371/journal.pone.0132159 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1692759878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A420144622</galeid><doaj_id>oai_doaj_org_article_0c73b335bac64adcb66558a7a874ba8f</doaj_id><sourcerecordid>A420144622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2349b59e591eeb08bb6f7efa6b2aa129098843ebeb743ca2c4b3f899bf1405953</originalsourceid><addsrcrecordid>eNqNk81u1DAQgCMEoqXwBggiISE47BL_xEkuSNXy05VaVWoLV2vsnWRdOfZiewt9Bx4aL91WXdQD8iGW_c3nzNhTFC9JNSWsIR8u_To4sNOVdzitCKOk7h4V-6RjdCJoxR7fm-8Vz2K8rKqatUI8LfaoyLyoxX7xe-bHFQRI5grLExgcJqPLM4zegdNYzkcYjBtKcIvyyMTkV5CW3vrBaLDlzIeAFhLG0rjy4qcvz08_kfIigIsDumw68euYxX6BNpa-Lw_Ha5-CXy3z3nEODNlyri0GH018XjzpwUZ8sf0eFN--fL6YHU2OT7_OZ4fHEy06miaU8U7VHdYdQVRVq5ToG-xBKApAaFd1bcsZKlQNZxqo5or1bdepnvCq7mp2ULy-8a6sj3JbyChJtjd11zZtJuY3xMLDpVwFM0K4lh6M_LvgwyAh5EpZlJVumGKsVqAFh4VWQtR1Cw20DVfQ9tn1cXvaWo240OhSznpHurvjzFIO_kpynvNoqix4txUE_2ONMcnRRI3WgsNc3s1_s4aKltOMvvkHfTi7LTVATsC4Pl8J6I1UHnJaEc4F3bimD1B5LHA0Or-63uT1nYD3OwGZSfgrDbCOUc7Pz_6fPf2-y769xy4RbFpGb9fJeBd3QX4D6vycYsD-rsikkpumua2G3DSN3DZNDnt1_4Lugm67hP0BVZ8Teg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692759878</pqid></control><display><type>article</type><title>Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Caron, Ilaria ; Micotti, Edoardo ; Paladini, Alessandra ; Merlino, Giuseppe ; Plebani, Laura ; Forloni, Gianluigi ; Modo, Michel ; Bendotti, Caterina</creator><contributor>Grierson, Andrew James</contributor><creatorcontrib>Caron, Ilaria ; Micotti, Edoardo ; Paladini, Alessandra ; Merlino, Giuseppe ; Plebani, Laura ; Forloni, Gianluigi ; Modo, Michel ; Bendotti, Caterina ; Grierson, Andrew James</creatorcontrib><description>Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0132159</identifier><identifier>PMID: 26132656</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Substitution ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - pathology ; Animal models ; Animals ; Axons ; Axons - pathology ; Bioindicators ; Biomarkers ; Brain stem ; Brain Stem - pathology ; Comparative analysis ; Degeneration ; Diffusion Tensor Imaging ; Disease Progression ; Feasibility studies ; Genetic engineering ; Hand Strength ; Histology ; Histopathology ; Humans ; Lumbosacral Region ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Transgenic ; Motor Neurons - pathology ; Motor nuclei ; Mutation, Missense ; Neurodegeneration ; Neurosciences ; NMR ; Nuclear magnetic resonance ; Nuclei ; Point Mutation ; Random Allocation ; Recombinant Proteins - genetics ; Resonance ; Rodents ; Skull ; Spinal cord ; Spinal Cord - pathology ; Substantia alba ; Superoxide dismutase ; Superoxide Dismutase - genetics ; Superoxide Dismutase-1 ; Transgenic mice ; Vacuoles - ultrastructure ; White Matter - pathology</subject><ispartof>PloS one, 2015-07, Vol.10 (7), p.e0132159-e0132159</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Caron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Caron et al 2015 Caron et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2349b59e591eeb08bb6f7efa6b2aa129098843ebeb743ca2c4b3f899bf1405953</citedby><cites>FETCH-LOGICAL-c692t-2349b59e591eeb08bb6f7efa6b2aa129098843ebeb743ca2c4b3f899bf1405953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488470/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488470/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26132656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Grierson, Andrew James</contributor><creatorcontrib>Caron, Ilaria</creatorcontrib><creatorcontrib>Micotti, Edoardo</creatorcontrib><creatorcontrib>Paladini, Alessandra</creatorcontrib><creatorcontrib>Merlino, Giuseppe</creatorcontrib><creatorcontrib>Plebani, Laura</creatorcontrib><creatorcontrib>Forloni, Gianluigi</creatorcontrib><creatorcontrib>Modo, Michel</creatorcontrib><creatorcontrib>Bendotti, Caterina</creatorcontrib><title>Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.</description><subject>Amino Acid Substitution</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Animal models</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - pathology</subject><subject>Bioindicators</subject><subject>Biomarkers</subject><subject>Brain stem</subject><subject>Brain Stem - pathology</subject><subject>Comparative analysis</subject><subject>Degeneration</subject><subject>Diffusion Tensor Imaging</subject><subject>Disease Progression</subject><subject>Feasibility studies</subject><subject>Genetic engineering</subject><subject>Hand Strength</subject><subject>Histology</subject><subject>Histopathology</subject><subject>Humans</subject><subject>Lumbosacral Region</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Motor Neurons - pathology</subject><subject>Motor nuclei</subject><subject>Mutation, Missense</subject><subject>Neurodegeneration</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclei</subject><subject>Point Mutation</subject><subject>Random Allocation</subject><subject>Recombinant Proteins - genetics</subject><subject>Resonance</subject><subject>Rodents</subject><subject>Skull</subject><subject>Spinal cord</subject><subject>Spinal Cord - pathology</subject><subject>Substantia alba</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase-1</subject><subject>Transgenic mice</subject><subject>Vacuoles - ultrastructure</subject><subject>White Matter - pathology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk81u1DAQgCMEoqXwBggiISE47BL_xEkuSNXy05VaVWoLV2vsnWRdOfZiewt9Bx4aL91WXdQD8iGW_c3nzNhTFC9JNSWsIR8u_To4sNOVdzitCKOk7h4V-6RjdCJoxR7fm-8Vz2K8rKqatUI8LfaoyLyoxX7xe-bHFQRI5grLExgcJqPLM4zegdNYzkcYjBtKcIvyyMTkV5CW3vrBaLDlzIeAFhLG0rjy4qcvz08_kfIigIsDumw68euYxX6BNpa-Lw_Ha5-CXy3z3nEODNlyri0GH018XjzpwUZ8sf0eFN--fL6YHU2OT7_OZ4fHEy06miaU8U7VHdYdQVRVq5ToG-xBKApAaFd1bcsZKlQNZxqo5or1bdepnvCq7mp2ULy-8a6sj3JbyChJtjd11zZtJuY3xMLDpVwFM0K4lh6M_LvgwyAh5EpZlJVumGKsVqAFh4VWQtR1Cw20DVfQ9tn1cXvaWo240OhSznpHurvjzFIO_kpynvNoqix4txUE_2ONMcnRRI3WgsNc3s1_s4aKltOMvvkHfTi7LTVATsC4Pl8J6I1UHnJaEc4F3bimD1B5LHA0Or-63uT1nYD3OwGZSfgrDbCOUc7Pz_6fPf2-y769xy4RbFpGb9fJeBd3QX4D6vycYsD-rsikkpumua2G3DSN3DZNDnt1_4Lugm67hP0BVZ8Teg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Caron, Ilaria</creator><creator>Micotti, Edoardo</creator><creator>Paladini, Alessandra</creator><creator>Merlino, Giuseppe</creator><creator>Plebani, Laura</creator><creator>Forloni, Gianluigi</creator><creator>Modo, Michel</creator><creator>Bendotti, Caterina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150701</creationdate><title>Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis</title><author>Caron, Ilaria ; Micotti, Edoardo ; Paladini, Alessandra ; Merlino, Giuseppe ; Plebani, Laura ; Forloni, Gianluigi ; Modo, Michel ; Bendotti, Caterina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2349b59e591eeb08bb6f7efa6b2aa129098843ebeb743ca2c4b3f899bf1405953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Substitution</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Animal models</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - pathology</topic><topic>Bioindicators</topic><topic>Biomarkers</topic><topic>Brain stem</topic><topic>Brain Stem - pathology</topic><topic>Comparative analysis</topic><topic>Degeneration</topic><topic>Diffusion Tensor Imaging</topic><topic>Disease Progression</topic><topic>Feasibility studies</topic><topic>Genetic engineering</topic><topic>Hand Strength</topic><topic>Histology</topic><topic>Histopathology</topic><topic>Humans</topic><topic>Lumbosacral Region</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Motor Neurons - pathology</topic><topic>Motor nuclei</topic><topic>Mutation, Missense</topic><topic>Neurodegeneration</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclei</topic><topic>Point Mutation</topic><topic>Random Allocation</topic><topic>Recombinant Proteins - genetics</topic><topic>Resonance</topic><topic>Rodents</topic><topic>Skull</topic><topic>Spinal cord</topic><topic>Spinal Cord - pathology</topic><topic>Substantia alba</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase-1</topic><topic>Transgenic mice</topic><topic>Vacuoles - ultrastructure</topic><topic>White Matter - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caron, Ilaria</creatorcontrib><creatorcontrib>Micotti, Edoardo</creatorcontrib><creatorcontrib>Paladini, Alessandra</creatorcontrib><creatorcontrib>Merlino, Giuseppe</creatorcontrib><creatorcontrib>Plebani, Laura</creatorcontrib><creatorcontrib>Forloni, Gianluigi</creatorcontrib><creatorcontrib>Modo, Michel</creatorcontrib><creatorcontrib>Bendotti, Caterina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caron, Ilaria</au><au>Micotti, Edoardo</au><au>Paladini, Alessandra</au><au>Merlino, Giuseppe</au><au>Plebani, Laura</au><au>Forloni, Gianluigi</au><au>Modo, Michel</au><au>Bendotti, Caterina</au><au>Grierson, Andrew James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>e0132159</spage><epage>e0132159</epage><pages>e0132159-e0132159</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI) is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice) with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26132656</pmid><doi>10.1371/journal.pone.0132159</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-07, Vol.10 (7), p.e0132159-e0132159 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1692759878 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Substitution Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - pathology Animal models Animals Axons Axons - pathology Bioindicators Biomarkers Brain stem Brain Stem - pathology Comparative analysis Degeneration Diffusion Tensor Imaging Disease Progression Feasibility studies Genetic engineering Hand Strength Histology Histopathology Humans Lumbosacral Region Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Mice Mice, 129 Strain Mice, Inbred C57BL Mice, Transgenic Motor Neurons - pathology Motor nuclei Mutation, Missense Neurodegeneration Neurosciences NMR Nuclear magnetic resonance Nuclei Point Mutation Random Allocation Recombinant Proteins - genetics Resonance Rodents Skull Spinal cord Spinal Cord - pathology Substantia alba Superoxide dismutase Superoxide Dismutase - genetics Superoxide Dismutase-1 Transgenic mice Vacuoles - ultrastructure White Matter - pathology |
title | Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Magnetic%20Resonance%20Imaging%20and%20Histopathological%20Correlates%20in%20Two%20SOD1%20Transgenic%20Mouse%20Models%20of%20Amyotrophic%20Lateral%20Sclerosis&rft.jtitle=PloS%20one&rft.au=Caron,%20Ilaria&rft.date=2015-07-01&rft.volume=10&rft.issue=7&rft.spage=e0132159&rft.epage=e0132159&rft.pages=e0132159-e0132159&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0132159&rft_dat=%3Cgale_plos_%3EA420144622%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692759878&rft_id=info:pmid/26132656&rft_galeid=A420144622&rft_doaj_id=oai_doaj_org_article_0c73b335bac64adcb66558a7a874ba8f&rfr_iscdi=true |