Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study

During expiration, the carbon dioxide (CO2) levels inside the dead space of a filtering facepiece respirator (FFR) increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS) comprising a one-way...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-06, Vol.10 (6), p.e0130306-e0130306
Hauptverfasser: Birgersson, Erik, Tang, Ee Ho, Lee, Wei Liang Jerome, Sak, Kwok Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0130306
container_issue 6
container_start_page e0130306
container_title PloS one
container_volume 10
creator Birgersson, Erik
Tang, Ee Ho
Lee, Wei Liang Jerome
Sak, Kwok Jiang
description During expiration, the carbon dioxide (CO2) levels inside the dead space of a filtering facepiece respirator (FFR) increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS) comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient - similar to the jets arising from natural expiration without a FFR - ensures that the expired air is removed and diluted more efficiently than a standard FFR.
doi_str_mv 10.1371/journal.pone.0130306
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1691409243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A419506116</galeid><doaj_id>oai_doaj_org_article_42b85c3913344c4b999810caed9dedd3</doaj_id><sourcerecordid>A419506116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b3cd4eec8c1d947561976739e2afaf7c90657ab42b1deb6ce7f228dc786444e43</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLw0GLHjhPzgFQVCpUmTWphr5ZjX1pXaVxsZ6zfHmftpgbtAfnBJ_t3__Od75LkNUZjTAr8aWM718pmvLMtjBEmiCD2JDnHnGQjliHy9MQ-S154v0EoJyVjz5OzjGGcI47OE78A3algbJvaOp1KV0Xrq7G3RkNq2nRmmgDOtKt0JhXsDChIF-B3xslgnU__mLBOZZtOosYNjK6hDT283PsA28_pJJ3a7a4Lso8gm3QZOr1_mTyrZePh1XG_SH7Nvv2c_hhdXn2fTyeXI8V4FkYVUZoCqFJhzWmRM8wLVhAOmaxlXSiOWF7IimYV1lAxBUWdZaVWRckopUDJRfL2oLtrrBfHenmBGccU8YySSMwPhLZyI3bObKXbCyuNuDuwbiWkC0Y1IGKYMleEY0IoVbTinJcYKQmaa9C61_pyjNZVW9AqVsLJZiA6vGnNWqzsjaC0zArSP_fDUcDZ3x34ILbGK2ga2YLt7t6dZZxwxCP67h_08eyO1ErGBExb2xhX9aJiQjHPUewCFqnxI1RcGrZGxeaqTTwfOHwcOEQmwG1Yyc57MV8u_p-9uh6y70_YNcgmrL1tur51_BCkB1A5672D-qHIGIl-Nu6rIfrZEMfZiG5vTj_owel-GMhfrqEJsQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691409243</pqid></control><display><type>article</type><title>Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Birgersson, Erik ; Tang, Ee Ho ; Lee, Wei Liang Jerome ; Sak, Kwok Jiang</creator><creatorcontrib>Birgersson, Erik ; Tang, Ee Ho ; Lee, Wei Liang Jerome ; Sak, Kwok Jiang</creatorcontrib><description>During expiration, the carbon dioxide (CO2) levels inside the dead space of a filtering facepiece respirator (FFR) increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS) comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient - similar to the jets arising from natural expiration without a FFR - ensures that the expired air is removed and diluted more efficiently than a standard FFR.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0130306</identifier><identifier>PMID: 26115090</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alveolar air ; Alveoli ; Analysis ; Carbon dioxide ; Carbon Dioxide - analysis ; Carbon dioxide concentration ; Computation ; Computer applications ; Conservation ; Dilution ; Equipment Design - instrumentation ; Expiration ; Expired air ; Filtration ; Filtration - instrumentation ; Fluid dynamics ; Housing ; Humidity ; Models, Theoretical ; Physiology ; Protective equipment ; Reduction ; Respiration ; Respirators ; Respiratory Protective Devices ; Respiratory system ; Venting systems</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0130306-e0130306</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Birgersson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Birgersson et al 2015 Birgersson et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b3cd4eec8c1d947561976739e2afaf7c90657ab42b1deb6ce7f228dc786444e43</citedby><cites>FETCH-LOGICAL-c692t-b3cd4eec8c1d947561976739e2afaf7c90657ab42b1deb6ce7f228dc786444e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482734/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482734/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26115090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birgersson, Erik</creatorcontrib><creatorcontrib>Tang, Ee Ho</creatorcontrib><creatorcontrib>Lee, Wei Liang Jerome</creatorcontrib><creatorcontrib>Sak, Kwok Jiang</creatorcontrib><title>Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>During expiration, the carbon dioxide (CO2) levels inside the dead space of a filtering facepiece respirator (FFR) increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS) comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient - similar to the jets arising from natural expiration without a FFR - ensures that the expired air is removed and diluted more efficiently than a standard FFR.</description><subject>Alveolar air</subject><subject>Alveoli</subject><subject>Analysis</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon dioxide concentration</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Conservation</subject><subject>Dilution</subject><subject>Equipment Design - instrumentation</subject><subject>Expiration</subject><subject>Expired air</subject><subject>Filtration</subject><subject>Filtration - instrumentation</subject><subject>Fluid dynamics</subject><subject>Housing</subject><subject>Humidity</subject><subject>Models, Theoretical</subject><subject>Physiology</subject><subject>Protective equipment</subject><subject>Reduction</subject><subject>Respiration</subject><subject>Respirators</subject><subject>Respiratory Protective Devices</subject><subject>Respiratory system</subject><subject>Venting systems</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBEQkLw0GLHjhPzgFQVCpUmTWphr5ZjX1pXaVxsZ6zfHmftpgbtAfnBJ_t3__Od75LkNUZjTAr8aWM718pmvLMtjBEmiCD2JDnHnGQjliHy9MQ-S154v0EoJyVjz5OzjGGcI47OE78A3algbJvaOp1KV0Xrq7G3RkNq2nRmmgDOtKt0JhXsDChIF-B3xslgnU__mLBOZZtOosYNjK6hDT283PsA28_pJJ3a7a4Lso8gm3QZOr1_mTyrZePh1XG_SH7Nvv2c_hhdXn2fTyeXI8V4FkYVUZoCqFJhzWmRM8wLVhAOmaxlXSiOWF7IimYV1lAxBUWdZaVWRckopUDJRfL2oLtrrBfHenmBGccU8YySSMwPhLZyI3bObKXbCyuNuDuwbiWkC0Y1IGKYMleEY0IoVbTinJcYKQmaa9C61_pyjNZVW9AqVsLJZiA6vGnNWqzsjaC0zArSP_fDUcDZ3x34ILbGK2ga2YLt7t6dZZxwxCP67h_08eyO1ErGBExb2xhX9aJiQjHPUewCFqnxI1RcGrZGxeaqTTwfOHwcOEQmwG1Yyc57MV8u_p-9uh6y70_YNcgmrL1tur51_BCkB1A5672D-qHIGIl-Nu6rIfrZEMfZiG5vTj_owel-GMhfrqEJsQ</recordid><startdate>20150626</startdate><enddate>20150626</enddate><creator>Birgersson, Erik</creator><creator>Tang, Ee Ho</creator><creator>Lee, Wei Liang Jerome</creator><creator>Sak, Kwok Jiang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150626</creationdate><title>Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study</title><author>Birgersson, Erik ; Tang, Ee Ho ; Lee, Wei Liang Jerome ; Sak, Kwok Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b3cd4eec8c1d947561976739e2afaf7c90657ab42b1deb6ce7f228dc786444e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alveolar air</topic><topic>Alveoli</topic><topic>Analysis</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon dioxide concentration</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Conservation</topic><topic>Dilution</topic><topic>Equipment Design - instrumentation</topic><topic>Expiration</topic><topic>Expired air</topic><topic>Filtration</topic><topic>Filtration - instrumentation</topic><topic>Fluid dynamics</topic><topic>Housing</topic><topic>Humidity</topic><topic>Models, Theoretical</topic><topic>Physiology</topic><topic>Protective equipment</topic><topic>Reduction</topic><topic>Respiration</topic><topic>Respirators</topic><topic>Respiratory Protective Devices</topic><topic>Respiratory system</topic><topic>Venting systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birgersson, Erik</creatorcontrib><creatorcontrib>Tang, Ee Ho</creatorcontrib><creatorcontrib>Lee, Wei Liang Jerome</creatorcontrib><creatorcontrib>Sak, Kwok Jiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birgersson, Erik</au><au>Tang, Ee Ho</au><au>Lee, Wei Liang Jerome</au><au>Sak, Kwok Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-26</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0130306</spage><epage>e0130306</epage><pages>e0130306-e0130306</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>During expiration, the carbon dioxide (CO2) levels inside the dead space of a filtering facepiece respirator (FFR) increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS) comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient - similar to the jets arising from natural expiration without a FFR - ensures that the expired air is removed and diluted more efficiently than a standard FFR.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26115090</pmid><doi>10.1371/journal.pone.0130306</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-06, Vol.10 (6), p.e0130306-e0130306
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1691409243
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Alveolar air
Alveoli
Analysis
Carbon dioxide
Carbon Dioxide - analysis
Carbon dioxide concentration
Computation
Computer applications
Conservation
Dilution
Equipment Design - instrumentation
Expiration
Expired air
Filtration
Filtration - instrumentation
Fluid dynamics
Housing
Humidity
Models, Theoretical
Physiology
Protective equipment
Reduction
Respiration
Respirators
Respiratory Protective Devices
Respiratory system
Venting systems
title Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Carbon%20Dioxide%20in%20Filtering%20Facepiece%20Respirators%20with%20an%20Active-Venting%20System:%20A%20Computational%20Study&rft.jtitle=PloS%20one&rft.au=Birgersson,%20Erik&rft.date=2015-06-26&rft.volume=10&rft.issue=6&rft.spage=e0130306&rft.epage=e0130306&rft.pages=e0130306-e0130306&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0130306&rft_dat=%3Cgale_plos_%3EA419506116%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691409243&rft_id=info:pmid/26115090&rft_galeid=A419506116&rft_doaj_id=oai_doaj_org_article_42b85c3913344c4b999810caed9dedd3&rfr_iscdi=true