A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers

We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-06, Vol.10 (6), p.e0129723-e0129723
Hauptverfasser: Galloway, Aaron W E, Brett, Michael T, Holtgrieve, Gordon W, Ward, Eric J, Ballantyne, Ashley P, Burns, Carolyn W, Kainz, Martin J, Müller-Navarra, Doerthe C, Persson, Jonas, Ravet, Joseph L, Strandberg, Ursula, Taipale, Sami J, Alhgren, Gunnel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0129723
container_issue 6
container_start_page e0129723
container_title PloS one
container_volume 10
creator Galloway, Aaron W E
Brett, Michael T
Holtgrieve, Gordon W
Ward, Eric J
Ballantyne, Ashley P
Burns, Carolyn W
Kainz, Martin J
Müller-Navarra, Doerthe C
Persson, Jonas
Ravet, Joseph L
Strandberg, Ursula
Taipale, Sami J
Alhgren, Gunnel
description We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.
doi_str_mv 10.1371/journal.pone.0129723
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1691408808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_826d5433400f41fcbf6f4ce4c95d5bd8</doaj_id><sourcerecordid>1692294260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629t-40615e619d49626880e0d7ca40231a8d9a5066a210d2059c7d3fafc7a6be2d0a3</originalsourceid><addsrcrecordid>eNptkl1v0zAUhiMEYmPwDxBE4oYLWvwVJ75BCh1jlSpxA9xaJ_7oXKVxZieb-u9x22xa0W5sy-c9j99jvVn2HqM5piX-uvFj6KCd974zc4SJKAl9kZ1jQcmME0RfPjmfZW9i3CBU0Irz19kZ4RgzwYrzbFXnVzAMu7xWTuffIZr9ujPRQZfXfR88qJvc-pAvO2tCcN06v3RmyF0q344wOJUvfBfHrQnxbfbKQhvNu2m_yP5c_fi9uJ6tfv1cLurVTHEihhlDHBeGY6GZ4IRXFTJIlwoYIhRDpQUUiHMgGGmCCqFKTS1YVQJvDNEI6EX28cjtWx_l9BFRYi4wQwlXJcXyqNAeNrIPbgthJz04ebjwYS0hJO-tkRXhumCUMoQsw1Y1llumDFOi0EWj96wvR1a8N_3YnNAu3d_6QBtHSTgqKU7yb5O5sdkarUw3BGhPuk4rnbuRa38nGUtWeJEAnydA8LejiYPcuqhM20Jn_HgYkxDB0nNJ-uk_6fOfwY4qFXyMwdhHMxjJfZYeuuQ-S3LKUmr78HSQx6aH8NB_FIvGDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691408808</pqid></control><display><type>article</type><title>A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Galloway, Aaron W E ; Brett, Michael T ; Holtgrieve, Gordon W ; Ward, Eric J ; Ballantyne, Ashley P ; Burns, Carolyn W ; Kainz, Martin J ; Müller-Navarra, Doerthe C ; Persson, Jonas ; Ravet, Joseph L ; Strandberg, Ursula ; Taipale, Sami J ; Alhgren, Gunnel</creator><creatorcontrib>Galloway, Aaron W E ; Brett, Michael T ; Holtgrieve, Gordon W ; Ward, Eric J ; Ballantyne, Ashley P ; Burns, Carolyn W ; Kainz, Martin J ; Müller-Navarra, Doerthe C ; Persson, Jonas ; Ravet, Joseph L ; Strandberg, Ursula ; Taipale, Sami J ; Alhgren, Gunnel</creatorcontrib><description>We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n &lt; 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0129723</identifier><identifier>PMID: 26114945</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algae ; Algorithms ; Animals ; Bayes Theorem ; Bayesian analysis ; Biology ; Biomarkers ; Carbon ; Computer simulation ; Consumers ; Cyanobacteria ; Daphnia ; Diet ; Ecology ; Ecosystem biology ; Ecosystems ; Environmental engineering ; Fatty acid composition ; Fatty acids ; Fatty Acids - chemistry ; Feeding trials ; Fisheries ; Food Chain ; Food chains ; Fractionation ; Galloway, Michael ; Libraries ; Lipids ; Mathematical models ; Model testing ; Nitrogen ; Phytoplankton ; Signatures ; Stable isotopes ; Stomach ; Tracers ; Uncertainty ; Zooplankton</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0129723-e0129723</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c629t-40615e619d49626880e0d7ca40231a8d9a5066a210d2059c7d3fafc7a6be2d0a3</citedby><cites>FETCH-LOGICAL-c629t-40615e619d49626880e0d7ca40231a8d9a5066a210d2059c7d3fafc7a6be2d0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482665/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4482665/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26114945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260731$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Galloway, Aaron W E</creatorcontrib><creatorcontrib>Brett, Michael T</creatorcontrib><creatorcontrib>Holtgrieve, Gordon W</creatorcontrib><creatorcontrib>Ward, Eric J</creatorcontrib><creatorcontrib>Ballantyne, Ashley P</creatorcontrib><creatorcontrib>Burns, Carolyn W</creatorcontrib><creatorcontrib>Kainz, Martin J</creatorcontrib><creatorcontrib>Müller-Navarra, Doerthe C</creatorcontrib><creatorcontrib>Persson, Jonas</creatorcontrib><creatorcontrib>Ravet, Joseph L</creatorcontrib><creatorcontrib>Strandberg, Ursula</creatorcontrib><creatorcontrib>Taipale, Sami J</creatorcontrib><creatorcontrib>Alhgren, Gunnel</creatorcontrib><title>A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n &lt; 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.</description><subject>Algae</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Consumers</subject><subject>Cyanobacteria</subject><subject>Daphnia</subject><subject>Diet</subject><subject>Ecology</subject><subject>Ecosystem biology</subject><subject>Ecosystems</subject><subject>Environmental engineering</subject><subject>Fatty acid composition</subject><subject>Fatty acids</subject><subject>Fatty Acids - chemistry</subject><subject>Feeding trials</subject><subject>Fisheries</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Fractionation</subject><subject>Galloway, Michael</subject><subject>Libraries</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Nitrogen</subject><subject>Phytoplankton</subject><subject>Signatures</subject><subject>Stable isotopes</subject><subject>Stomach</subject><subject>Tracers</subject><subject>Uncertainty</subject><subject>Zooplankton</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1v0zAUhiMEYmPwDxBE4oYLWvwVJ75BCh1jlSpxA9xaJ_7oXKVxZieb-u9x22xa0W5sy-c9j99jvVn2HqM5piX-uvFj6KCd974zc4SJKAl9kZ1jQcmME0RfPjmfZW9i3CBU0Irz19kZ4RgzwYrzbFXnVzAMu7xWTuffIZr9ujPRQZfXfR88qJvc-pAvO2tCcN06v3RmyF0q344wOJUvfBfHrQnxbfbKQhvNu2m_yP5c_fi9uJ6tfv1cLurVTHEihhlDHBeGY6GZ4IRXFTJIlwoYIhRDpQUUiHMgGGmCCqFKTS1YVQJvDNEI6EX28cjtWx_l9BFRYi4wQwlXJcXyqNAeNrIPbgthJz04ebjwYS0hJO-tkRXhumCUMoQsw1Y1llumDFOi0EWj96wvR1a8N_3YnNAu3d_6QBtHSTgqKU7yb5O5sdkarUw3BGhPuk4rnbuRa38nGUtWeJEAnydA8LejiYPcuqhM20Jn_HgYkxDB0nNJ-uk_6fOfwY4qFXyMwdhHMxjJfZYeuuQ-S3LKUmr78HSQx6aH8NB_FIvGDA</recordid><startdate>20150626</startdate><enddate>20150626</enddate><creator>Galloway, Aaron W E</creator><creator>Brett, Michael T</creator><creator>Holtgrieve, Gordon W</creator><creator>Ward, Eric J</creator><creator>Ballantyne, Ashley P</creator><creator>Burns, Carolyn W</creator><creator>Kainz, Martin J</creator><creator>Müller-Navarra, Doerthe C</creator><creator>Persson, Jonas</creator><creator>Ravet, Joseph L</creator><creator>Strandberg, Ursula</creator><creator>Taipale, Sami J</creator><creator>Alhgren, Gunnel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20150626</creationdate><title>A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers</title><author>Galloway, Aaron W E ; Brett, Michael T ; Holtgrieve, Gordon W ; Ward, Eric J ; Ballantyne, Ashley P ; Burns, Carolyn W ; Kainz, Martin J ; Müller-Navarra, Doerthe C ; Persson, Jonas ; Ravet, Joseph L ; Strandberg, Ursula ; Taipale, Sami J ; Alhgren, Gunnel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629t-40615e619d49626880e0d7ca40231a8d9a5066a210d2059c7d3fafc7a6be2d0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algae</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Consumers</topic><topic>Cyanobacteria</topic><topic>Daphnia</topic><topic>Diet</topic><topic>Ecology</topic><topic>Ecosystem biology</topic><topic>Ecosystems</topic><topic>Environmental engineering</topic><topic>Fatty acid composition</topic><topic>Fatty acids</topic><topic>Fatty Acids - chemistry</topic><topic>Feeding trials</topic><topic>Fisheries</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Fractionation</topic><topic>Galloway, Michael</topic><topic>Libraries</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Nitrogen</topic><topic>Phytoplankton</topic><topic>Signatures</topic><topic>Stable isotopes</topic><topic>Stomach</topic><topic>Tracers</topic><topic>Uncertainty</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galloway, Aaron W E</creatorcontrib><creatorcontrib>Brett, Michael T</creatorcontrib><creatorcontrib>Holtgrieve, Gordon W</creatorcontrib><creatorcontrib>Ward, Eric J</creatorcontrib><creatorcontrib>Ballantyne, Ashley P</creatorcontrib><creatorcontrib>Burns, Carolyn W</creatorcontrib><creatorcontrib>Kainz, Martin J</creatorcontrib><creatorcontrib>Müller-Navarra, Doerthe C</creatorcontrib><creatorcontrib>Persson, Jonas</creatorcontrib><creatorcontrib>Ravet, Joseph L</creatorcontrib><creatorcontrib>Strandberg, Ursula</creatorcontrib><creatorcontrib>Taipale, Sami J</creatorcontrib><creatorcontrib>Alhgren, Gunnel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galloway, Aaron W E</au><au>Brett, Michael T</au><au>Holtgrieve, Gordon W</au><au>Ward, Eric J</au><au>Ballantyne, Ashley P</au><au>Burns, Carolyn W</au><au>Kainz, Martin J</au><au>Müller-Navarra, Doerthe C</au><au>Persson, Jonas</au><au>Ravet, Joseph L</au><au>Strandberg, Ursula</au><au>Taipale, Sami J</au><au>Alhgren, Gunnel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-26</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0129723</spage><epage>e0129723</epage><pages>e0129723-e0129723</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a 'consumer-resource library' of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n &lt; 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26114945</pmid><doi>10.1371/journal.pone.0129723</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-06, Vol.10 (6), p.e0129723-e0129723
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1691408808
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algae
Algorithms
Animals
Bayes Theorem
Bayesian analysis
Biology
Biomarkers
Carbon
Computer simulation
Consumers
Cyanobacteria
Daphnia
Diet
Ecology
Ecosystem biology
Ecosystems
Environmental engineering
Fatty acid composition
Fatty acids
Fatty Acids - chemistry
Feeding trials
Fisheries
Food Chain
Food chains
Fractionation
Galloway, Michael
Libraries
Lipids
Mathematical models
Model testing
Nitrogen
Phytoplankton
Signatures
Stable isotopes
Stomach
Tracers
Uncertainty
Zooplankton
title A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fatty%20Acid%20Based%20Bayesian%20Approach%20for%20Inferring%20Diet%20in%20Aquatic%20Consumers&rft.jtitle=PloS%20one&rft.au=Galloway,%20Aaron%20W%20E&rft.date=2015-06-26&rft.volume=10&rft.issue=6&rft.spage=e0129723&rft.epage=e0129723&rft.pages=e0129723-e0129723&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0129723&rft_dat=%3Cproquest_plos_%3E1692294260%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691408808&rft_id=info:pmid/26114945&rft_doaj_id=oai_doaj_org_article_826d5433400f41fcbf6f4ce4c95d5bd8&rfr_iscdi=true