Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias

Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-06, Vol.10 (6), p.e0130805-e0130805
Hauptverfasser: Reta, Carolina, Altamirano, Leopoldo, Gonzalez, Jesus A, Diaz-Hernandez, Raquel, Peregrina, Hayde, Olmos, Ivan, Alonso, Jose E, Lobato, Ruben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0130805
container_issue 6
container_start_page e0130805
container_title PloS one
container_volume 10
creator Reta, Carolina
Altamirano, Leopoldo
Gonzalez, Jesus A
Diaz-Hernandez, Raquel
Peregrina, Hayde
Olmos, Ivan
Alonso, Jose E
Lobato, Ruben
description Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (when classifying acute leukemia subtypes) depending on the physician's experience and the sample quality. This problem raises the need to create automatic tools that provide hematologists with a second opinion during the classification process. Our research presents a contextual analysis methodology for the detection of acute leukemia subtypes from bone marrow cells images. We propose a cells separation algorithm to break up overlapped regions. In this phase, we achieved an average accuracy of 95% in the evaluation of the segmentation process. In a second phase, we extract descriptive features to the nucleus and cytoplasm obtained in the segmentation phase in order to classify leukemia families and subtypes. We finally created a decision algorithm that provides an automatic diagnosis for a patient. In our experiments, we achieved an overall accuracy of 92% in the supervised classification of acute leukemia families, 84% for the lymphoblastic subtypes, and 92% for the myeloblastic subtypes. Finally, we achieved accuracies of 95% in the diagnosis of leukemia families and 90% in the diagnosis of leukemia subtypes.
doi_str_mv 10.1371/journal.pone.0130805
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1691040182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A419239418</galeid><doaj_id>oai_doaj_org_article_f2118d1e17b4494b9a3b2f08d0bc97d2</doaj_id><sourcerecordid>A419239418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1e76235f2bca8a028ae04fee10fb3ad6cf805a4bb89f38a055d17497e8ad153</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBYQkJw2MWOnYcvlZbltdJWlVjgak0cO-vixEuc8DjyzXFIWm1QD8gHW5Pf_CfziqLHBC8JzcirK9e3DdjlwTVqiQnFOU7uRKeE03iRxpjePXqfRA-8v8I4oXma3o9O4pTgjGbsNPq9U1Wtmg464xoETYnWFrw32sjR5DR6HSKgC2hb9wOtlbUebWqolEefvWkqtHZNp352PVi0abRr69ExvNCFKoOORW8MVI3zxg9yK9l3Cm1V_1XVBvzD6J4G69Wj6T6Ldu_eflp_WGwv32_Wq-1CpjzuFkRlaUwTHRcScsBxDgozrRTBuqBQplKH_IEVRc41DUCSlCRjPFM5lCShZ9HTUfVgnRdT7bwgKSeYYZLHgdiMROngShxaU0P7Szgw4q_BtZWAtjPSKqFjQvKSKJIVjHFWcKBFrHFe4kLyrBy0zqdofVGrUoYCt2BnovMvjdmLyn0XjGWcMRoEXkwCrfvWK9-J2ngZag-Ncv343wlPWZoG9Nk_6O3ZTVQFIQET-hTiykFUrBjhMeWM5IFa3kKFU4ZWyTAG2gT7zOHlzEGOs1BB773Y7D7-P3v5Zc4-P2L3Cmy39872w2T5OchGULbO-1bpmyITLIY9ua6GGPZETHsS3J4cN-jG6Xox6B8pwQ6b</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691040182</pqid></control><display><type>article</type><title>Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Reta, Carolina ; Altamirano, Leopoldo ; Gonzalez, Jesus A ; Diaz-Hernandez, Raquel ; Peregrina, Hayde ; Olmos, Ivan ; Alonso, Jose E ; Lobato, Ruben</creator><contributor>Mills, Ken</contributor><creatorcontrib>Reta, Carolina ; Altamirano, Leopoldo ; Gonzalez, Jesus A ; Diaz-Hernandez, Raquel ; Peregrina, Hayde ; Olmos, Ivan ; Alonso, Jose E ; Lobato, Ruben ; Mills, Ken</creatorcontrib><description>Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (when classifying acute leukemia subtypes) depending on the physician's experience and the sample quality. This problem raises the need to create automatic tools that provide hematologists with a second opinion during the classification process. Our research presents a contextual analysis methodology for the detection of acute leukemia subtypes from bone marrow cells images. We propose a cells separation algorithm to break up overlapped regions. In this phase, we achieved an average accuracy of 95% in the evaluation of the segmentation process. In a second phase, we extract descriptive features to the nucleus and cytoplasm obtained in the segmentation phase in order to classify leukemia families and subtypes. We finally created a decision algorithm that provides an automatic diagnosis for a patient. In our experiments, we achieved an overall accuracy of 92% in the supervised classification of acute leukemia families, 84% for the lymphoblastic subtypes, and 92% for the myeloblastic subtypes. Finally, we achieved accuracies of 95% in the diagnosis of leukemia families and 90% in the diagnosis of leukemia subtypes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0130805</identifier><identifier>PMID: 26107374</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acute Disease ; Algorithms ; Analysis ; Astrophysics ; Blood ; Bone marrow ; Bone Marrow Cells - ultrastructure ; Cancer ; Classification ; Computer science ; Computers ; Cytoplasm ; Data mining ; Diagnosis ; Feature extraction ; Hematology ; Hospitals ; Humans ; Image classification ; Image detection ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; International conferences ; Leukemia ; Leukemia - classification ; Leukemia - diagnosis ; Leukemia - pathology ; Medical diagnosis ; Medical personnel ; Morphology ; Nuclei ; Pattern Recognition, Automated - methods ; Pattern Recognition, Automated - statistics &amp; numerical data ; Physicians ; Segmentation ; Sensitivity and Specificity ; Signal processing</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0130805-e0130805</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Reta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Reta et al 2015 Reta et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1e76235f2bca8a028ae04fee10fb3ad6cf805a4bb89f38a055d17497e8ad153</citedby><cites>FETCH-LOGICAL-c692t-1e76235f2bca8a028ae04fee10fb3ad6cf805a4bb89f38a055d17497e8ad153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479443/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479443/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26107374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mills, Ken</contributor><creatorcontrib>Reta, Carolina</creatorcontrib><creatorcontrib>Altamirano, Leopoldo</creatorcontrib><creatorcontrib>Gonzalez, Jesus A</creatorcontrib><creatorcontrib>Diaz-Hernandez, Raquel</creatorcontrib><creatorcontrib>Peregrina, Hayde</creatorcontrib><creatorcontrib>Olmos, Ivan</creatorcontrib><creatorcontrib>Alonso, Jose E</creatorcontrib><creatorcontrib>Lobato, Ruben</creatorcontrib><title>Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (when classifying acute leukemia subtypes) depending on the physician's experience and the sample quality. This problem raises the need to create automatic tools that provide hematologists with a second opinion during the classification process. Our research presents a contextual analysis methodology for the detection of acute leukemia subtypes from bone marrow cells images. We propose a cells separation algorithm to break up overlapped regions. In this phase, we achieved an average accuracy of 95% in the evaluation of the segmentation process. In a second phase, we extract descriptive features to the nucleus and cytoplasm obtained in the segmentation phase in order to classify leukemia families and subtypes. We finally created a decision algorithm that provides an automatic diagnosis for a patient. In our experiments, we achieved an overall accuracy of 92% in the supervised classification of acute leukemia families, 84% for the lymphoblastic subtypes, and 92% for the myeloblastic subtypes. Finally, we achieved accuracies of 95% in the diagnosis of leukemia families and 90% in the diagnosis of leukemia subtypes.</description><subject>Acute Disease</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Astrophysics</subject><subject>Blood</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - ultrastructure</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computer science</subject><subject>Computers</subject><subject>Cytoplasm</subject><subject>Data mining</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Hematology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>International conferences</subject><subject>Leukemia</subject><subject>Leukemia - classification</subject><subject>Leukemia - diagnosis</subject><subject>Leukemia - pathology</subject><subject>Medical diagnosis</subject><subject>Medical personnel</subject><subject>Morphology</subject><subject>Nuclei</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern Recognition, Automated - statistics &amp; numerical data</subject><subject>Physicians</subject><subject>Segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBYQkJw2MWOnYcvlZbltdJWlVjgak0cO-vixEuc8DjyzXFIWm1QD8gHW5Pf_CfziqLHBC8JzcirK9e3DdjlwTVqiQnFOU7uRKeE03iRxpjePXqfRA-8v8I4oXma3o9O4pTgjGbsNPq9U1Wtmg464xoETYnWFrw32sjR5DR6HSKgC2hb9wOtlbUebWqolEefvWkqtHZNp352PVi0abRr69ExvNCFKoOORW8MVI3zxg9yK9l3Cm1V_1XVBvzD6J4G69Wj6T6Ldu_eflp_WGwv32_Wq-1CpjzuFkRlaUwTHRcScsBxDgozrRTBuqBQplKH_IEVRc41DUCSlCRjPFM5lCShZ9HTUfVgnRdT7bwgKSeYYZLHgdiMROngShxaU0P7Szgw4q_BtZWAtjPSKqFjQvKSKJIVjHFWcKBFrHFe4kLyrBy0zqdofVGrUoYCt2BnovMvjdmLyn0XjGWcMRoEXkwCrfvWK9-J2ngZag-Ncv343wlPWZoG9Nk_6O3ZTVQFIQET-hTiykFUrBjhMeWM5IFa3kKFU4ZWyTAG2gT7zOHlzEGOs1BB773Y7D7-P3v5Zc4-P2L3Cmy39872w2T5OchGULbO-1bpmyITLIY9ua6GGPZETHsS3J4cN-jG6Xox6B8pwQ6b</recordid><startdate>20150624</startdate><enddate>20150624</enddate><creator>Reta, Carolina</creator><creator>Altamirano, Leopoldo</creator><creator>Gonzalez, Jesus A</creator><creator>Diaz-Hernandez, Raquel</creator><creator>Peregrina, Hayde</creator><creator>Olmos, Ivan</creator><creator>Alonso, Jose E</creator><creator>Lobato, Ruben</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150624</creationdate><title>Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias</title><author>Reta, Carolina ; Altamirano, Leopoldo ; Gonzalez, Jesus A ; Diaz-Hernandez, Raquel ; Peregrina, Hayde ; Olmos, Ivan ; Alonso, Jose E ; Lobato, Ruben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1e76235f2bca8a028ae04fee10fb3ad6cf805a4bb89f38a055d17497e8ad153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acute Disease</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Astrophysics</topic><topic>Blood</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - ultrastructure</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computer science</topic><topic>Computers</topic><topic>Cytoplasm</topic><topic>Data mining</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Hematology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>International conferences</topic><topic>Leukemia</topic><topic>Leukemia - classification</topic><topic>Leukemia - diagnosis</topic><topic>Leukemia - pathology</topic><topic>Medical diagnosis</topic><topic>Medical personnel</topic><topic>Morphology</topic><topic>Nuclei</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern Recognition, Automated - statistics &amp; numerical data</topic><topic>Physicians</topic><topic>Segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reta, Carolina</creatorcontrib><creatorcontrib>Altamirano, Leopoldo</creatorcontrib><creatorcontrib>Gonzalez, Jesus A</creatorcontrib><creatorcontrib>Diaz-Hernandez, Raquel</creatorcontrib><creatorcontrib>Peregrina, Hayde</creatorcontrib><creatorcontrib>Olmos, Ivan</creatorcontrib><creatorcontrib>Alonso, Jose E</creatorcontrib><creatorcontrib>Lobato, Ruben</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reta, Carolina</au><au>Altamirano, Leopoldo</au><au>Gonzalez, Jesus A</au><au>Diaz-Hernandez, Raquel</au><au>Peregrina, Hayde</au><au>Olmos, Ivan</au><au>Alonso, Jose E</au><au>Lobato, Ruben</au><au>Mills, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-24</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0130805</spage><epage>e0130805</epage><pages>e0130805-e0130805</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (when classifying acute leukemia subtypes) depending on the physician's experience and the sample quality. This problem raises the need to create automatic tools that provide hematologists with a second opinion during the classification process. Our research presents a contextual analysis methodology for the detection of acute leukemia subtypes from bone marrow cells images. We propose a cells separation algorithm to break up overlapped regions. In this phase, we achieved an average accuracy of 95% in the evaluation of the segmentation process. In a second phase, we extract descriptive features to the nucleus and cytoplasm obtained in the segmentation phase in order to classify leukemia families and subtypes. We finally created a decision algorithm that provides an automatic diagnosis for a patient. In our experiments, we achieved an overall accuracy of 92% in the supervised classification of acute leukemia families, 84% for the lymphoblastic subtypes, and 92% for the myeloblastic subtypes. Finally, we achieved accuracies of 95% in the diagnosis of leukemia families and 90% in the diagnosis of leukemia subtypes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26107374</pmid><doi>10.1371/journal.pone.0130805</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-06, Vol.10 (6), p.e0130805-e0130805
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1691040182
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acute Disease
Algorithms
Analysis
Astrophysics
Blood
Bone marrow
Bone Marrow Cells - ultrastructure
Cancer
Classification
Computer science
Computers
Cytoplasm
Data mining
Diagnosis
Feature extraction
Hematology
Hospitals
Humans
Image classification
Image detection
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
International conferences
Leukemia
Leukemia - classification
Leukemia - diagnosis
Leukemia - pathology
Medical diagnosis
Medical personnel
Morphology
Nuclei
Pattern Recognition, Automated - methods
Pattern Recognition, Automated - statistics & numerical data
Physicians
Segmentation
Sensitivity and Specificity
Signal processing
title Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20and%20Classification%20of%20Bone%20Marrow%20Cells%20Images%20Using%20Contextual%20Information%20for%20Medical%20Diagnosis%20of%20Acute%20Leukemias&rft.jtitle=PloS%20one&rft.au=Reta,%20Carolina&rft.date=2015-06-24&rft.volume=10&rft.issue=6&rft.spage=e0130805&rft.epage=e0130805&rft.pages=e0130805-e0130805&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0130805&rft_dat=%3Cgale_plos_%3EA419239418%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691040182&rft_id=info:pmid/26107374&rft_galeid=A419239418&rft_doaj_id=oai_doaj_org_article_f2118d1e17b4494b9a3b2f08d0bc97d2&rfr_iscdi=true