An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1
Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allerg...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-06, Vol.10 (6), p.e0128888 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e0128888 |
container_title | PloS one |
container_volume | 10 |
creator | Shipkowski, Kelly A Taylor, Alexia J Thompson, Elizabeth A Glista-Baker, Ellen E Sayers, Brian C Messenger, Zachary J Bauer, Rebecca N Jaspers, Ilona Bonner, James C |
description | Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.
THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.
Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs.
These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis. |
doi_str_mv | 10.1371/journal.pone.0128888 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1689992443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418580606</galeid><doaj_id>oai_doaj_org_article_da1ef4b330d14854990e50109357b932</doaj_id><sourcerecordid>A418580606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b4fa9542abc90b2c3284217230bee2605997f4adb001dfac1aab08709fe9ac443</originalsourceid><addsrcrecordid>eNqNk9-K1DAUh4so7rr6BqIFQfCiY9KmneZmoYz_BkYXnNHbcJqedjK0SU3aQd_AxzazM7tMQcH2oiX5ztf0xzlB8JySGU3m9O3OjFZDO-uNxhmhce6vB8El5UkcZTFJHp69XwRPnNsRkiZ5lj0OLuKMcEpJfhn8LnRYtC3aRslwNeom_KykNaj3yhrdoR7C9dj3Fp1DFy7AlkaHX0CbYSwxWupqlFiFS1230HXgTIdhIQe1h0F5cK8gXG-KTRa9wx51ddAt9VaV6nbb1N7oenAY0afBoxpah89Oz6vg24f3m8WnaHXzcbkoVpHMeDxEJauBpyyGUnJSxjKJcxbTeZyQEtH_Vsr5vGZQlYTQqgZJAUqSzwmvkYNkLLkKXh69fWucOIXoBM1yznnsAU8sj0RlYCd6qzqwv4QBJW4XjG0E2EHJFkUFFGtWJgmpKMtTxjnBlFDCk3Re-vC96_r0tbHssJI-AAvtRDrd0WorGrMXjM1ZxjMveHUSWPNjRDf848gnqgF_KqVr42WyU06KgtE8zUlGDq7ZXyh_V9gp6duoVn59UvBmUuCZAX8ODYzOieX66_-zN9-n7OszdovQDltn2vHQFG4KsiPoW9I5i_V9cpSIwxTcpSEOUyBOU-DLXpynfl901_bJH0EqAuo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689992443</pqid></control><display><type>article</type><title>An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shipkowski, Kelly A ; Taylor, Alexia J ; Thompson, Elizabeth A ; Glista-Baker, Ellen E ; Sayers, Brian C ; Messenger, Zachary J ; Bauer, Rebecca N ; Jaspers, Ilona ; Bonner, James C</creator><contributor>Allen, Irving Coy</contributor><creatorcontrib>Shipkowski, Kelly A ; Taylor, Alexia J ; Thompson, Elizabeth A ; Glista-Baker, Ellen E ; Sayers, Brian C ; Messenger, Zachary J ; Bauer, Rebecca N ; Jaspers, Ilona ; Bonner, James C ; Allen, Irving Coy</creatorcontrib><description>Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.
THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.
Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs.
These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0128888</identifier><identifier>PMID: 26091108</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Allergens ; Allergies ; Aluminum ; Alveoli ; Analysis ; Animal tissues ; Animals ; Antigens, Dermatophagoides - immunology ; Asthma ; Bronchus ; Carbon ; Caspase ; Caspase 1 - metabolism ; Caspase-1 ; Cell Line ; Chemotaxis, Leukocyte - immunology ; Cytokines ; Cytokines - genetics ; Cytokines - metabolism ; Disease Models, Animal ; Environmental health ; Epithelium ; Exposure ; Fibroblasts ; Fibrosis ; Gene Expression ; Genotype & phenotype ; Health aspects ; Health risks ; House dust ; Humans ; Hypersensitivity ; Hypersensitivity - genetics ; Hypersensitivity - immunology ; Hypersensitivity - metabolism ; Hypersensitivity - pathology ; Immunoglobulin E - blood ; Immunoglobulin E - immunology ; In vivo methods and tests ; Infiltration ; Inflammasomes ; Inflammasomes - metabolism ; Inflammation ; Inhalation ; Interleukin 13 ; Interleukin 4 ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Leflunomide ; Leukocyte Count ; Leukocytes (eosinophilic) ; Leukocytes (neutrophilic) ; Lipopolysaccharides ; Lipopolysaccharides - immunology ; Lung - immunology ; Lung - metabolism ; Lung - pathology ; Lung diseases ; Lungs ; Lymphocytes T ; Macrophages ; Male ; Medicine ; Mice ; Monocytes - immunology ; Monocytes - metabolism ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Nanotubes, Carbon - adverse effects ; Neutrophils - immunology ; Neutrophils - metabolism ; Pathogenesis ; Priming ; Pyroglyphidae - immunology ; Respiration ; Respiratory tract ; Respiratory tract diseases ; Stat6 protein ; STAT6 Transcription Factor - metabolism ; Th2 Cells - immunology ; Th2 Cells - metabolism ; Toxicology</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0128888</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b4fa9542abc90b2c3284217230bee2605997f4adb001dfac1aab08709fe9ac443</citedby><cites>FETCH-LOGICAL-c692t-b4fa9542abc90b2c3284217230bee2605997f4adb001dfac1aab08709fe9ac443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474696/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474696/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26091108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Allen, Irving Coy</contributor><creatorcontrib>Shipkowski, Kelly A</creatorcontrib><creatorcontrib>Taylor, Alexia J</creatorcontrib><creatorcontrib>Thompson, Elizabeth A</creatorcontrib><creatorcontrib>Glista-Baker, Ellen E</creatorcontrib><creatorcontrib>Sayers, Brian C</creatorcontrib><creatorcontrib>Messenger, Zachary J</creatorcontrib><creatorcontrib>Bauer, Rebecca N</creatorcontrib><creatorcontrib>Jaspers, Ilona</creatorcontrib><creatorcontrib>Bonner, James C</creatorcontrib><title>An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.
THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.
Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs.
These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.</description><subject>Allergens</subject><subject>Allergies</subject><subject>Aluminum</subject><subject>Alveoli</subject><subject>Analysis</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Antigens, Dermatophagoides - immunology</subject><subject>Asthma</subject><subject>Bronchus</subject><subject>Carbon</subject><subject>Caspase</subject><subject>Caspase 1 - metabolism</subject><subject>Caspase-1</subject><subject>Cell Line</subject><subject>Chemotaxis, Leukocyte - immunology</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Disease Models, Animal</subject><subject>Environmental health</subject><subject>Epithelium</subject><subject>Exposure</subject><subject>Fibroblasts</subject><subject>Fibrosis</subject><subject>Gene Expression</subject><subject>Genotype & phenotype</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>House dust</subject><subject>Humans</subject><subject>Hypersensitivity</subject><subject>Hypersensitivity - genetics</subject><subject>Hypersensitivity - immunology</subject><subject>Hypersensitivity - metabolism</subject><subject>Hypersensitivity - pathology</subject><subject>Immunoglobulin E - blood</subject><subject>Immunoglobulin E - immunology</subject><subject>In vivo methods and tests</subject><subject>Infiltration</subject><subject>Inflammasomes</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Inhalation</subject><subject>Interleukin 13</subject><subject>Interleukin 4</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Leflunomide</subject><subject>Leukocyte Count</subject><subject>Leukocytes (eosinophilic)</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - immunology</subject><subject>Lung - immunology</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Male</subject><subject>Medicine</subject><subject>Mice</subject><subject>Monocytes - immunology</subject><subject>Monocytes - metabolism</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - adverse effects</subject><subject>Neutrophils - immunology</subject><subject>Neutrophils - metabolism</subject><subject>Pathogenesis</subject><subject>Priming</subject><subject>Pyroglyphidae - immunology</subject><subject>Respiration</subject><subject>Respiratory tract</subject><subject>Respiratory tract diseases</subject><subject>Stat6 protein</subject><subject>STAT6 Transcription Factor - metabolism</subject><subject>Th2 Cells - immunology</subject><subject>Th2 Cells - metabolism</subject><subject>Toxicology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-K1DAUh4so7rr6BqIFQfCiY9KmneZmoYz_BkYXnNHbcJqedjK0SU3aQd_AxzazM7tMQcH2oiX5ztf0xzlB8JySGU3m9O3OjFZDO-uNxhmhce6vB8El5UkcZTFJHp69XwRPnNsRkiZ5lj0OLuKMcEpJfhn8LnRYtC3aRslwNeom_KykNaj3yhrdoR7C9dj3Fp1DFy7AlkaHX0CbYSwxWupqlFiFS1230HXgTIdhIQe1h0F5cK8gXG-KTRa9wx51ddAt9VaV6nbb1N7oenAY0afBoxpah89Oz6vg24f3m8WnaHXzcbkoVpHMeDxEJauBpyyGUnJSxjKJcxbTeZyQEtH_Vsr5vGZQlYTQqgZJAUqSzwmvkYNkLLkKXh69fWucOIXoBM1yznnsAU8sj0RlYCd6qzqwv4QBJW4XjG0E2EHJFkUFFGtWJgmpKMtTxjnBlFDCk3Re-vC96_r0tbHssJI-AAvtRDrd0WorGrMXjM1ZxjMveHUSWPNjRDf848gnqgF_KqVr42WyU06KgtE8zUlGDq7ZXyh_V9gp6duoVn59UvBmUuCZAX8ODYzOieX66_-zN9-n7OszdovQDltn2vHQFG4KsiPoW9I5i_V9cpSIwxTcpSEOUyBOU-DLXpynfl901_bJH0EqAuo</recordid><startdate>20150619</startdate><enddate>20150619</enddate><creator>Shipkowski, Kelly A</creator><creator>Taylor, Alexia J</creator><creator>Thompson, Elizabeth A</creator><creator>Glista-Baker, Ellen E</creator><creator>Sayers, Brian C</creator><creator>Messenger, Zachary J</creator><creator>Bauer, Rebecca N</creator><creator>Jaspers, Ilona</creator><creator>Bonner, James C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150619</creationdate><title>An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1</title><author>Shipkowski, Kelly A ; Taylor, Alexia J ; Thompson, Elizabeth A ; Glista-Baker, Ellen E ; Sayers, Brian C ; Messenger, Zachary J ; Bauer, Rebecca N ; Jaspers, Ilona ; Bonner, James C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b4fa9542abc90b2c3284217230bee2605997f4adb001dfac1aab08709fe9ac443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allergens</topic><topic>Allergies</topic><topic>Aluminum</topic><topic>Alveoli</topic><topic>Analysis</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Antigens, Dermatophagoides - immunology</topic><topic>Asthma</topic><topic>Bronchus</topic><topic>Carbon</topic><topic>Caspase</topic><topic>Caspase 1 - metabolism</topic><topic>Caspase-1</topic><topic>Cell Line</topic><topic>Chemotaxis, Leukocyte - immunology</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Disease Models, Animal</topic><topic>Environmental health</topic><topic>Epithelium</topic><topic>Exposure</topic><topic>Fibroblasts</topic><topic>Fibrosis</topic><topic>Gene Expression</topic><topic>Genotype & phenotype</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>House dust</topic><topic>Humans</topic><topic>Hypersensitivity</topic><topic>Hypersensitivity - genetics</topic><topic>Hypersensitivity - immunology</topic><topic>Hypersensitivity - metabolism</topic><topic>Hypersensitivity - pathology</topic><topic>Immunoglobulin E - blood</topic><topic>Immunoglobulin E - immunology</topic><topic>In vivo methods and tests</topic><topic>Infiltration</topic><topic>Inflammasomes</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Inhalation</topic><topic>Interleukin 13</topic><topic>Interleukin 4</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Leflunomide</topic><topic>Leukocyte Count</topic><topic>Leukocytes (eosinophilic)</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - immunology</topic><topic>Lung - immunology</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Male</topic><topic>Medicine</topic><topic>Mice</topic><topic>Monocytes - immunology</topic><topic>Monocytes - metabolism</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - adverse effects</topic><topic>Neutrophils - immunology</topic><topic>Neutrophils - metabolism</topic><topic>Pathogenesis</topic><topic>Priming</topic><topic>Pyroglyphidae - immunology</topic><topic>Respiration</topic><topic>Respiratory tract</topic><topic>Respiratory tract diseases</topic><topic>Stat6 protein</topic><topic>STAT6 Transcription Factor - metabolism</topic><topic>Th2 Cells - immunology</topic><topic>Th2 Cells - metabolism</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shipkowski, Kelly A</creatorcontrib><creatorcontrib>Taylor, Alexia J</creatorcontrib><creatorcontrib>Thompson, Elizabeth A</creatorcontrib><creatorcontrib>Glista-Baker, Ellen E</creatorcontrib><creatorcontrib>Sayers, Brian C</creatorcontrib><creatorcontrib>Messenger, Zachary J</creatorcontrib><creatorcontrib>Bauer, Rebecca N</creatorcontrib><creatorcontrib>Jaspers, Ilona</creatorcontrib><creatorcontrib>Bonner, James C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shipkowski, Kelly A</au><au>Taylor, Alexia J</au><au>Thompson, Elizabeth A</au><au>Glista-Baker, Ellen E</au><au>Sayers, Brian C</au><au>Messenger, Zachary J</au><au>Bauer, Rebecca N</au><au>Jaspers, Ilona</au><au>Bonner, James C</au><au>Allen, Irving Coy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-19</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0128888</spage><pages>e0128888-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.
THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.
Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs.
These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26091108</pmid><doi>10.1371/journal.pone.0128888</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-06, Vol.10 (6), p.e0128888 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1689992443 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Allergens Allergies Aluminum Alveoli Analysis Animal tissues Animals Antigens, Dermatophagoides - immunology Asthma Bronchus Carbon Caspase Caspase 1 - metabolism Caspase-1 Cell Line Chemotaxis, Leukocyte - immunology Cytokines Cytokines - genetics Cytokines - metabolism Disease Models, Animal Environmental health Epithelium Exposure Fibroblasts Fibrosis Gene Expression Genotype & phenotype Health aspects Health risks House dust Humans Hypersensitivity Hypersensitivity - genetics Hypersensitivity - immunology Hypersensitivity - metabolism Hypersensitivity - pathology Immunoglobulin E - blood Immunoglobulin E - immunology In vivo methods and tests Infiltration Inflammasomes Inflammasomes - metabolism Inflammation Inhalation Interleukin 13 Interleukin 4 Interleukin-1beta - genetics Interleukin-1beta - metabolism Leflunomide Leukocyte Count Leukocytes (eosinophilic) Leukocytes (neutrophilic) Lipopolysaccharides Lipopolysaccharides - immunology Lung - immunology Lung - metabolism Lung - pathology Lung diseases Lungs Lymphocytes T Macrophages Male Medicine Mice Monocytes - immunology Monocytes - metabolism Multi wall carbon nanotubes Nanotechnology Nanotubes Nanotubes, Carbon - adverse effects Neutrophils - immunology Neutrophils - metabolism Pathogenesis Priming Pyroglyphidae - immunology Respiration Respiratory tract Respiratory tract diseases Stat6 protein STAT6 Transcription Factor - metabolism Th2 Cells - immunology Th2 Cells - metabolism Toxicology |
title | An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Allergic%20Lung%20Microenvironment%20Suppresses%20Carbon%20Nanotube-Induced%20Inflammasome%20Activation%20via%20STAT6-Dependent%20Inhibition%20of%20Caspase-1&rft.jtitle=PloS%20one&rft.au=Shipkowski,%20Kelly%20A&rft.date=2015-06-19&rft.volume=10&rft.issue=6&rft.spage=e0128888&rft.pages=e0128888-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0128888&rft_dat=%3Cgale_plos_%3EA418580606%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689992443&rft_id=info:pmid/26091108&rft_galeid=A418580606&rft_doaj_id=oai_doaj_org_article_da1ef4b330d14854990e50109357b932&rfr_iscdi=true |