An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1

Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allerg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-06, Vol.10 (6), p.e0128888
Hauptverfasser: Shipkowski, Kelly A, Taylor, Alexia J, Thompson, Elizabeth A, Glista-Baker, Ellen E, Sayers, Brian C, Messenger, Zachary J, Bauer, Rebecca N, Jaspers, Ilona, Bonner, James C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e0128888
container_title PloS one
container_volume 10
creator Shipkowski, Kelly A
Taylor, Alexia J
Thompson, Elizabeth A
Glista-Baker, Ellen E
Sayers, Brian C
Messenger, Zachary J
Bauer, Rebecca N
Jaspers, Ilona
Bonner, James C
description Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation. THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses. Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs. These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.
doi_str_mv 10.1371/journal.pone.0128888
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1689992443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418580606</galeid><doaj_id>oai_doaj_org_article_da1ef4b330d14854990e50109357b932</doaj_id><sourcerecordid>A418580606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b4fa9542abc90b2c3284217230bee2605997f4adb001dfac1aab08709fe9ac443</originalsourceid><addsrcrecordid>eNqNk9-K1DAUh4so7rr6BqIFQfCiY9KmneZmoYz_BkYXnNHbcJqedjK0SU3aQd_AxzazM7tMQcH2oiX5ztf0xzlB8JySGU3m9O3OjFZDO-uNxhmhce6vB8El5UkcZTFJHp69XwRPnNsRkiZ5lj0OLuKMcEpJfhn8LnRYtC3aRslwNeom_KykNaj3yhrdoR7C9dj3Fp1DFy7AlkaHX0CbYSwxWupqlFiFS1230HXgTIdhIQe1h0F5cK8gXG-KTRa9wx51ddAt9VaV6nbb1N7oenAY0afBoxpah89Oz6vg24f3m8WnaHXzcbkoVpHMeDxEJauBpyyGUnJSxjKJcxbTeZyQEtH_Vsr5vGZQlYTQqgZJAUqSzwmvkYNkLLkKXh69fWucOIXoBM1yznnsAU8sj0RlYCd6qzqwv4QBJW4XjG0E2EHJFkUFFGtWJgmpKMtTxjnBlFDCk3Re-vC96_r0tbHssJI-AAvtRDrd0WorGrMXjM1ZxjMveHUSWPNjRDf848gnqgF_KqVr42WyU06KgtE8zUlGDq7ZXyh_V9gp6duoVn59UvBmUuCZAX8ODYzOieX66_-zN9-n7OszdovQDltn2vHQFG4KsiPoW9I5i_V9cpSIwxTcpSEOUyBOU-DLXpynfl901_bJH0EqAuo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689992443</pqid></control><display><type>article</type><title>An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shipkowski, Kelly A ; Taylor, Alexia J ; Thompson, Elizabeth A ; Glista-Baker, Ellen E ; Sayers, Brian C ; Messenger, Zachary J ; Bauer, Rebecca N ; Jaspers, Ilona ; Bonner, James C</creator><contributor>Allen, Irving Coy</contributor><creatorcontrib>Shipkowski, Kelly A ; Taylor, Alexia J ; Thompson, Elizabeth A ; Glista-Baker, Ellen E ; Sayers, Brian C ; Messenger, Zachary J ; Bauer, Rebecca N ; Jaspers, Ilona ; Bonner, James C ; Allen, Irving Coy</creatorcontrib><description>Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation. THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses. Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs. These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0128888</identifier><identifier>PMID: 26091108</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Allergens ; Allergies ; Aluminum ; Alveoli ; Analysis ; Animal tissues ; Animals ; Antigens, Dermatophagoides - immunology ; Asthma ; Bronchus ; Carbon ; Caspase ; Caspase 1 - metabolism ; Caspase-1 ; Cell Line ; Chemotaxis, Leukocyte - immunology ; Cytokines ; Cytokines - genetics ; Cytokines - metabolism ; Disease Models, Animal ; Environmental health ; Epithelium ; Exposure ; Fibroblasts ; Fibrosis ; Gene Expression ; Genotype &amp; phenotype ; Health aspects ; Health risks ; House dust ; Humans ; Hypersensitivity ; Hypersensitivity - genetics ; Hypersensitivity - immunology ; Hypersensitivity - metabolism ; Hypersensitivity - pathology ; Immunoglobulin E - blood ; Immunoglobulin E - immunology ; In vivo methods and tests ; Infiltration ; Inflammasomes ; Inflammasomes - metabolism ; Inflammation ; Inhalation ; Interleukin 13 ; Interleukin 4 ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Leflunomide ; Leukocyte Count ; Leukocytes (eosinophilic) ; Leukocytes (neutrophilic) ; Lipopolysaccharides ; Lipopolysaccharides - immunology ; Lung - immunology ; Lung - metabolism ; Lung - pathology ; Lung diseases ; Lungs ; Lymphocytes T ; Macrophages ; Male ; Medicine ; Mice ; Monocytes - immunology ; Monocytes - metabolism ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Nanotubes, Carbon - adverse effects ; Neutrophils - immunology ; Neutrophils - metabolism ; Pathogenesis ; Priming ; Pyroglyphidae - immunology ; Respiration ; Respiratory tract ; Respiratory tract diseases ; Stat6 protein ; STAT6 Transcription Factor - metabolism ; Th2 Cells - immunology ; Th2 Cells - metabolism ; Toxicology</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0128888</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b4fa9542abc90b2c3284217230bee2605997f4adb001dfac1aab08709fe9ac443</citedby><cites>FETCH-LOGICAL-c692t-b4fa9542abc90b2c3284217230bee2605997f4adb001dfac1aab08709fe9ac443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474696/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474696/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26091108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Allen, Irving Coy</contributor><creatorcontrib>Shipkowski, Kelly A</creatorcontrib><creatorcontrib>Taylor, Alexia J</creatorcontrib><creatorcontrib>Thompson, Elizabeth A</creatorcontrib><creatorcontrib>Glista-Baker, Ellen E</creatorcontrib><creatorcontrib>Sayers, Brian C</creatorcontrib><creatorcontrib>Messenger, Zachary J</creatorcontrib><creatorcontrib>Bauer, Rebecca N</creatorcontrib><creatorcontrib>Jaspers, Ilona</creatorcontrib><creatorcontrib>Bonner, James C</creatorcontrib><title>An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation. THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses. Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs. These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.</description><subject>Allergens</subject><subject>Allergies</subject><subject>Aluminum</subject><subject>Alveoli</subject><subject>Analysis</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Antigens, Dermatophagoides - immunology</subject><subject>Asthma</subject><subject>Bronchus</subject><subject>Carbon</subject><subject>Caspase</subject><subject>Caspase 1 - metabolism</subject><subject>Caspase-1</subject><subject>Cell Line</subject><subject>Chemotaxis, Leukocyte - immunology</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Disease Models, Animal</subject><subject>Environmental health</subject><subject>Epithelium</subject><subject>Exposure</subject><subject>Fibroblasts</subject><subject>Fibrosis</subject><subject>Gene Expression</subject><subject>Genotype &amp; phenotype</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>House dust</subject><subject>Humans</subject><subject>Hypersensitivity</subject><subject>Hypersensitivity - genetics</subject><subject>Hypersensitivity - immunology</subject><subject>Hypersensitivity - metabolism</subject><subject>Hypersensitivity - pathology</subject><subject>Immunoglobulin E - blood</subject><subject>Immunoglobulin E - immunology</subject><subject>In vivo methods and tests</subject><subject>Infiltration</subject><subject>Inflammasomes</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Inhalation</subject><subject>Interleukin 13</subject><subject>Interleukin 4</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Leflunomide</subject><subject>Leukocyte Count</subject><subject>Leukocytes (eosinophilic)</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - immunology</subject><subject>Lung - immunology</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Male</subject><subject>Medicine</subject><subject>Mice</subject><subject>Monocytes - immunology</subject><subject>Monocytes - metabolism</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - adverse effects</subject><subject>Neutrophils - immunology</subject><subject>Neutrophils - metabolism</subject><subject>Pathogenesis</subject><subject>Priming</subject><subject>Pyroglyphidae - immunology</subject><subject>Respiration</subject><subject>Respiratory tract</subject><subject>Respiratory tract diseases</subject><subject>Stat6 protein</subject><subject>STAT6 Transcription Factor - metabolism</subject><subject>Th2 Cells - immunology</subject><subject>Th2 Cells - metabolism</subject><subject>Toxicology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-K1DAUh4so7rr6BqIFQfCiY9KmneZmoYz_BkYXnNHbcJqedjK0SU3aQd_AxzazM7tMQcH2oiX5ztf0xzlB8JySGU3m9O3OjFZDO-uNxhmhce6vB8El5UkcZTFJHp69XwRPnNsRkiZ5lj0OLuKMcEpJfhn8LnRYtC3aRslwNeom_KykNaj3yhrdoR7C9dj3Fp1DFy7AlkaHX0CbYSwxWupqlFiFS1230HXgTIdhIQe1h0F5cK8gXG-KTRa9wx51ddAt9VaV6nbb1N7oenAY0afBoxpah89Oz6vg24f3m8WnaHXzcbkoVpHMeDxEJauBpyyGUnJSxjKJcxbTeZyQEtH_Vsr5vGZQlYTQqgZJAUqSzwmvkYNkLLkKXh69fWucOIXoBM1yznnsAU8sj0RlYCd6qzqwv4QBJW4XjG0E2EHJFkUFFGtWJgmpKMtTxjnBlFDCk3Re-vC96_r0tbHssJI-AAvtRDrd0WorGrMXjM1ZxjMveHUSWPNjRDf848gnqgF_KqVr42WyU06KgtE8zUlGDq7ZXyh_V9gp6duoVn59UvBmUuCZAX8ODYzOieX66_-zN9-n7OszdovQDltn2vHQFG4KsiPoW9I5i_V9cpSIwxTcpSEOUyBOU-DLXpynfl901_bJH0EqAuo</recordid><startdate>20150619</startdate><enddate>20150619</enddate><creator>Shipkowski, Kelly A</creator><creator>Taylor, Alexia J</creator><creator>Thompson, Elizabeth A</creator><creator>Glista-Baker, Ellen E</creator><creator>Sayers, Brian C</creator><creator>Messenger, Zachary J</creator><creator>Bauer, Rebecca N</creator><creator>Jaspers, Ilona</creator><creator>Bonner, James C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150619</creationdate><title>An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1</title><author>Shipkowski, Kelly A ; Taylor, Alexia J ; Thompson, Elizabeth A ; Glista-Baker, Ellen E ; Sayers, Brian C ; Messenger, Zachary J ; Bauer, Rebecca N ; Jaspers, Ilona ; Bonner, James C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b4fa9542abc90b2c3284217230bee2605997f4adb001dfac1aab08709fe9ac443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allergens</topic><topic>Allergies</topic><topic>Aluminum</topic><topic>Alveoli</topic><topic>Analysis</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Antigens, Dermatophagoides - immunology</topic><topic>Asthma</topic><topic>Bronchus</topic><topic>Carbon</topic><topic>Caspase</topic><topic>Caspase 1 - metabolism</topic><topic>Caspase-1</topic><topic>Cell Line</topic><topic>Chemotaxis, Leukocyte - immunology</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Disease Models, Animal</topic><topic>Environmental health</topic><topic>Epithelium</topic><topic>Exposure</topic><topic>Fibroblasts</topic><topic>Fibrosis</topic><topic>Gene Expression</topic><topic>Genotype &amp; phenotype</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>House dust</topic><topic>Humans</topic><topic>Hypersensitivity</topic><topic>Hypersensitivity - genetics</topic><topic>Hypersensitivity - immunology</topic><topic>Hypersensitivity - metabolism</topic><topic>Hypersensitivity - pathology</topic><topic>Immunoglobulin E - blood</topic><topic>Immunoglobulin E - immunology</topic><topic>In vivo methods and tests</topic><topic>Infiltration</topic><topic>Inflammasomes</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Inhalation</topic><topic>Interleukin 13</topic><topic>Interleukin 4</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Leflunomide</topic><topic>Leukocyte Count</topic><topic>Leukocytes (eosinophilic)</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - immunology</topic><topic>Lung - immunology</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Male</topic><topic>Medicine</topic><topic>Mice</topic><topic>Monocytes - immunology</topic><topic>Monocytes - metabolism</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - adverse effects</topic><topic>Neutrophils - immunology</topic><topic>Neutrophils - metabolism</topic><topic>Pathogenesis</topic><topic>Priming</topic><topic>Pyroglyphidae - immunology</topic><topic>Respiration</topic><topic>Respiratory tract</topic><topic>Respiratory tract diseases</topic><topic>Stat6 protein</topic><topic>STAT6 Transcription Factor - metabolism</topic><topic>Th2 Cells - immunology</topic><topic>Th2 Cells - metabolism</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shipkowski, Kelly A</creatorcontrib><creatorcontrib>Taylor, Alexia J</creatorcontrib><creatorcontrib>Thompson, Elizabeth A</creatorcontrib><creatorcontrib>Glista-Baker, Ellen E</creatorcontrib><creatorcontrib>Sayers, Brian C</creatorcontrib><creatorcontrib>Messenger, Zachary J</creatorcontrib><creatorcontrib>Bauer, Rebecca N</creatorcontrib><creatorcontrib>Jaspers, Ilona</creatorcontrib><creatorcontrib>Bonner, James C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shipkowski, Kelly A</au><au>Taylor, Alexia J</au><au>Thompson, Elizabeth A</au><au>Glista-Baker, Ellen E</au><au>Sayers, Brian C</au><au>Messenger, Zachary J</au><au>Bauer, Rebecca N</au><au>Jaspers, Ilona</au><au>Bonner, James C</au><au>Allen, Irving Coy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-19</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0128888</spage><pages>e0128888-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation. THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses. Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs. These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26091108</pmid><doi>10.1371/journal.pone.0128888</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-06, Vol.10 (6), p.e0128888
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1689992443
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Allergens
Allergies
Aluminum
Alveoli
Analysis
Animal tissues
Animals
Antigens, Dermatophagoides - immunology
Asthma
Bronchus
Carbon
Caspase
Caspase 1 - metabolism
Caspase-1
Cell Line
Chemotaxis, Leukocyte - immunology
Cytokines
Cytokines - genetics
Cytokines - metabolism
Disease Models, Animal
Environmental health
Epithelium
Exposure
Fibroblasts
Fibrosis
Gene Expression
Genotype & phenotype
Health aspects
Health risks
House dust
Humans
Hypersensitivity
Hypersensitivity - genetics
Hypersensitivity - immunology
Hypersensitivity - metabolism
Hypersensitivity - pathology
Immunoglobulin E - blood
Immunoglobulin E - immunology
In vivo methods and tests
Infiltration
Inflammasomes
Inflammasomes - metabolism
Inflammation
Inhalation
Interleukin 13
Interleukin 4
Interleukin-1beta - genetics
Interleukin-1beta - metabolism
Leflunomide
Leukocyte Count
Leukocytes (eosinophilic)
Leukocytes (neutrophilic)
Lipopolysaccharides
Lipopolysaccharides - immunology
Lung - immunology
Lung - metabolism
Lung - pathology
Lung diseases
Lungs
Lymphocytes T
Macrophages
Male
Medicine
Mice
Monocytes - immunology
Monocytes - metabolism
Multi wall carbon nanotubes
Nanotechnology
Nanotubes
Nanotubes, Carbon - adverse effects
Neutrophils - immunology
Neutrophils - metabolism
Pathogenesis
Priming
Pyroglyphidae - immunology
Respiration
Respiratory tract
Respiratory tract diseases
Stat6 protein
STAT6 Transcription Factor - metabolism
Th2 Cells - immunology
Th2 Cells - metabolism
Toxicology
title An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Allergic%20Lung%20Microenvironment%20Suppresses%20Carbon%20Nanotube-Induced%20Inflammasome%20Activation%20via%20STAT6-Dependent%20Inhibition%20of%20Caspase-1&rft.jtitle=PloS%20one&rft.au=Shipkowski,%20Kelly%20A&rft.date=2015-06-19&rft.volume=10&rft.issue=6&rft.spage=e0128888&rft.pages=e0128888-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0128888&rft_dat=%3Cgale_plos_%3EA418580606%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689992443&rft_id=info:pmid/26091108&rft_galeid=A418580606&rft_doaj_id=oai_doaj_org_article_da1ef4b330d14854990e50109357b932&rfr_iscdi=true