Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins
Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abil...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-06, Vol.10 (6), p.e0129248-e0129248 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0129248 |
---|---|
container_issue | 6 |
container_start_page | e0129248 |
container_title | PloS one |
container_volume | 10 |
creator | Gasanov, Sardar E Shrivastava, Indira H Israilov, Firuz S Kim, Aleksandr A Rylova, Kamila A Zhang, Boris Dagda, Ruben K |
description | Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity. |
doi_str_mv | 10.1371/journal.pone.0129248 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1689992136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418580546</galeid><doaj_id>oai_doaj_org_article_798039efe104477c99c2df72b8a291c6</doaj_id><sourcerecordid>A418580546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-21e26aa1d260e82eb9abd925e761712987f6d8174186a4aef9283d14c75d4c563</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0BI7qRPzgDQKg0gbk6Ds1bo6l9ZVYhfbQeun4CvjrN3Uoj2gKLF1-d3_cv_4kuQ5Tcc0K-i7le2dgXa8tgbHKWWC5eWD5JiKjI04S7OHe_uj5In3qzSdZCXnj5MjxlNBaSqOkz_fYAXEDA97rcEAmdq5A3KFxnZkugk2xLjxZDqrCJh6WCvySXvXrwO50MGqpTW109CSC-xiqkFSmYALp8PmPam6dasVBG2jRmMd-QheKzJbOsTRmTYLdFjv1XmaPGqg9fhst54kP88-z6ZfR-eXX6rp6flIccHCiFFkHIDWsRMsGc4FzGvBJlhwWkQvyqLhdUmLnJYccsBGsDKraa6KSZ2rCc9Okpdb3XVrvdx56SXlpRCC0Wwgqi1RW1jJtdMduI20oOVNwLqFBBe0alEWokwzgQ3SNM-LQgmhWN0UbF4CE1QNWh921fp5h7VCExy0B6KHb4xeyoX9LaNczoWIAm92As7-6tEH2WmvsG2j3bYfvlukPI93GdFX_6D3d7ejFhAb0Kaxsa4aROVpNG1SppN8oMb3UPGqsdMqHrxGx_hBwtuDhMgEvA4L6L2X1Y_v_89eXh2yr_fYJUIblt62_c25OgTzLaic9d5hc2cyTeUwN7duyGFu5G5uYtqL_R90l3Q7KNlfy7gStw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689992136</pqid></control><display><type>article</type><title>Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Gasanov, Sardar E ; Shrivastava, Indira H ; Israilov, Firuz S ; Kim, Aleksandr A ; Rylova, Kamila A ; Zhang, Boris ; Dagda, Ruben K</creator><creatorcontrib>Gasanov, Sardar E ; Shrivastava, Indira H ; Israilov, Firuz S ; Kim, Aleksandr A ; Rylova, Kamila A ; Zhang, Boris ; Dagda, Ruben K</creatorcontrib><description>Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0129248</identifier><identifier>PMID: 26091109</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Amino Acid Sequence ; Amino acids ; Analysis ; Animals ; Binding sites ; Calorimetry ; Cardiolipin ; Cardiolipins - chemistry ; Cardiolipins - metabolism ; Computer simulation ; Cytotoxins ; Cytotoxins - chemistry ; Cytotoxins - metabolism ; Cytotoxins - toxicity ; Dehydration ; Deuterium ; Differential scanning calorimetry ; Docking ; Elapid Venoms - chemistry ; Electron paramagnetic resonance ; Enzymes ; Lecithin ; Lipid Bilayers ; Liposomes ; Magnetic resonance ; Membrane lipids ; Membranes ; Mitochondria ; Mitochondrial DNA ; Mitochondrial Membranes - drug effects ; Models, Molecular ; Molecular chains ; Molecular Docking Simulation ; Molecular Sequence Data ; Naja naja ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Phosphatidylcholine ; Phosphatidylserine ; Phosphorescence ; Phosphorus ; Poisonous snakes ; Protein Binding ; Protein Conformation ; Proteins ; Residues ; Resonance ; Sequence Alignment ; Spectroscopy ; Structural integrity ; Unilamellar Liposomes ; Venom ; Venoms</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0129248-e0129248</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Gasanov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Gasanov et al 2015 Gasanov et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-21e26aa1d260e82eb9abd925e761712987f6d8174186a4aef9283d14c75d4c563</citedby><cites>FETCH-LOGICAL-c692t-21e26aa1d260e82eb9abd925e761712987f6d8174186a4aef9283d14c75d4c563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474699/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474699/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26091109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gasanov, Sardar E</creatorcontrib><creatorcontrib>Shrivastava, Indira H</creatorcontrib><creatorcontrib>Israilov, Firuz S</creatorcontrib><creatorcontrib>Kim, Aleksandr A</creatorcontrib><creatorcontrib>Rylova, Kamila A</creatorcontrib><creatorcontrib>Zhang, Boris</creatorcontrib><creatorcontrib>Dagda, Ruben K</creatorcontrib><title>Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity.</description><subject>Acids</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Calorimetry</subject><subject>Cardiolipin</subject><subject>Cardiolipins - chemistry</subject><subject>Cardiolipins - metabolism</subject><subject>Computer simulation</subject><subject>Cytotoxins</subject><subject>Cytotoxins - chemistry</subject><subject>Cytotoxins - metabolism</subject><subject>Cytotoxins - toxicity</subject><subject>Dehydration</subject><subject>Deuterium</subject><subject>Differential scanning calorimetry</subject><subject>Docking</subject><subject>Elapid Venoms - chemistry</subject><subject>Electron paramagnetic resonance</subject><subject>Enzymes</subject><subject>Lecithin</subject><subject>Lipid Bilayers</subject><subject>Liposomes</subject><subject>Magnetic resonance</subject><subject>Membrane lipids</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membranes - drug effects</subject><subject>Models, Molecular</subject><subject>Molecular chains</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Sequence Data</subject><subject>Naja naja</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Phosphatidylcholine</subject><subject>Phosphatidylserine</subject><subject>Phosphorescence</subject><subject>Phosphorus</subject><subject>Poisonous snakes</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Residues</subject><subject>Resonance</subject><subject>Sequence Alignment</subject><subject>Spectroscopy</subject><subject>Structural integrity</subject><subject>Unilamellar Liposomes</subject><subject>Venom</subject><subject>Venoms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0BI7qRPzgDQKg0gbk6Ds1bo6l9ZVYhfbQeun4CvjrN3Uoj2gKLF1-d3_cv_4kuQ5Tcc0K-i7le2dgXa8tgbHKWWC5eWD5JiKjI04S7OHe_uj5In3qzSdZCXnj5MjxlNBaSqOkz_fYAXEDA97rcEAmdq5A3KFxnZkugk2xLjxZDqrCJh6WCvySXvXrwO50MGqpTW109CSC-xiqkFSmYALp8PmPam6dasVBG2jRmMd-QheKzJbOsTRmTYLdFjv1XmaPGqg9fhst54kP88-z6ZfR-eXX6rp6flIccHCiFFkHIDWsRMsGc4FzGvBJlhwWkQvyqLhdUmLnJYccsBGsDKraa6KSZ2rCc9Okpdb3XVrvdx56SXlpRCC0Wwgqi1RW1jJtdMduI20oOVNwLqFBBe0alEWokwzgQ3SNM-LQgmhWN0UbF4CE1QNWh921fp5h7VCExy0B6KHb4xeyoX9LaNczoWIAm92As7-6tEH2WmvsG2j3bYfvlukPI93GdFX_6D3d7ejFhAb0Kaxsa4aROVpNG1SppN8oMb3UPGqsdMqHrxGx_hBwtuDhMgEvA4L6L2X1Y_v_89eXh2yr_fYJUIblt62_c25OgTzLaic9d5hc2cyTeUwN7duyGFu5G5uYtqL_R90l3Q7KNlfy7gStw</recordid><startdate>20150619</startdate><enddate>20150619</enddate><creator>Gasanov, Sardar E</creator><creator>Shrivastava, Indira H</creator><creator>Israilov, Firuz S</creator><creator>Kim, Aleksandr A</creator><creator>Rylova, Kamila A</creator><creator>Zhang, Boris</creator><creator>Dagda, Ruben K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150619</creationdate><title>Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins</title><author>Gasanov, Sardar E ; Shrivastava, Indira H ; Israilov, Firuz S ; Kim, Aleksandr A ; Rylova, Kamila A ; Zhang, Boris ; Dagda, Ruben K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-21e26aa1d260e82eb9abd925e761712987f6d8174186a4aef9283d14c75d4c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acids</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Calorimetry</topic><topic>Cardiolipin</topic><topic>Cardiolipins - chemistry</topic><topic>Cardiolipins - metabolism</topic><topic>Computer simulation</topic><topic>Cytotoxins</topic><topic>Cytotoxins - chemistry</topic><topic>Cytotoxins - metabolism</topic><topic>Cytotoxins - toxicity</topic><topic>Dehydration</topic><topic>Deuterium</topic><topic>Differential scanning calorimetry</topic><topic>Docking</topic><topic>Elapid Venoms - chemistry</topic><topic>Electron paramagnetic resonance</topic><topic>Enzymes</topic><topic>Lecithin</topic><topic>Lipid Bilayers</topic><topic>Liposomes</topic><topic>Magnetic resonance</topic><topic>Membrane lipids</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membranes - drug effects</topic><topic>Models, Molecular</topic><topic>Molecular chains</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Sequence Data</topic><topic>Naja naja</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Phosphatidylcholine</topic><topic>Phosphatidylserine</topic><topic>Phosphorescence</topic><topic>Phosphorus</topic><topic>Poisonous snakes</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Residues</topic><topic>Resonance</topic><topic>Sequence Alignment</topic><topic>Spectroscopy</topic><topic>Structural integrity</topic><topic>Unilamellar Liposomes</topic><topic>Venom</topic><topic>Venoms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gasanov, Sardar E</creatorcontrib><creatorcontrib>Shrivastava, Indira H</creatorcontrib><creatorcontrib>Israilov, Firuz S</creatorcontrib><creatorcontrib>Kim, Aleksandr A</creatorcontrib><creatorcontrib>Rylova, Kamila A</creatorcontrib><creatorcontrib>Zhang, Boris</creatorcontrib><creatorcontrib>Dagda, Ruben K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasanov, Sardar E</au><au>Shrivastava, Indira H</au><au>Israilov, Firuz S</au><au>Kim, Aleksandr A</au><au>Rylova, Kamila A</au><au>Zhang, Boris</au><au>Dagda, Ruben K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-19</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0129248</spage><epage>e0129248</epage><pages>e0129248-e0129248</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26091109</pmid><doi>10.1371/journal.pone.0129248</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-06, Vol.10 (6), p.e0129248-e0129248 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1689992136 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acids Amino Acid Sequence Amino acids Analysis Animals Binding sites Calorimetry Cardiolipin Cardiolipins - chemistry Cardiolipins - metabolism Computer simulation Cytotoxins Cytotoxins - chemistry Cytotoxins - metabolism Cytotoxins - toxicity Dehydration Deuterium Differential scanning calorimetry Docking Elapid Venoms - chemistry Electron paramagnetic resonance Enzymes Lecithin Lipid Bilayers Liposomes Magnetic resonance Membrane lipids Membranes Mitochondria Mitochondrial DNA Mitochondrial Membranes - drug effects Models, Molecular Molecular chains Molecular Docking Simulation Molecular Sequence Data Naja naja NMR Nuclear magnetic resonance Nuclear magnetic resonance spectroscopy Phosphatidylcholine Phosphatidylserine Phosphorescence Phosphorus Poisonous snakes Protein Binding Protein Conformation Proteins Residues Resonance Sequence Alignment Spectroscopy Structural integrity Unilamellar Liposomes Venom Venoms |
title | Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Naja%20naja%20oxiana%20Cobra%20Venom%20Cytotoxins%20CTI%20and%20CTII%20Disrupt%20Mitochondrial%20Membrane%20Integrity:%20Implications%20for%20Basic%20Three-Fingered%20Cytotoxins&rft.jtitle=PloS%20one&rft.au=Gasanov,%20Sardar%20E&rft.date=2015-06-19&rft.volume=10&rft.issue=6&rft.spage=e0129248&rft.epage=e0129248&rft.pages=e0129248-e0129248&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0129248&rft_dat=%3Cgale_plos_%3EA418580546%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689992136&rft_id=info:pmid/26091109&rft_galeid=A418580546&rft_doaj_id=oai_doaj_org_article_798039efe104477c99c2df72b8a291c6&rfr_iscdi=true |