Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images

Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-06, Vol.10 (6), p.e0130178-e0130178
Hauptverfasser: Wang, Yuliang, Zhang, Zaicheng, Wang, Huimin, Bi, Shusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0130178
container_issue 6
container_start_page e0130178
container_title PloS one
container_volume 10
creator Wang, Yuliang
Zhang, Zaicheng
Wang, Huimin
Bi, Shusheng
description Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.
doi_str_mv 10.1371/journal.pone.0130178
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1687821853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e5728f47fe5b4b73be1e9cc8797715bd</doaj_id><sourcerecordid>1689310460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-74f45dc8b9d18503192df990a511a9e60097da43edae0f4109f426c23db703113</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBCIlsI_QGCJC5dd7Nix4wsSbPlYqaJIwNly7JesV0m8tZ2i8uvx7qZVizjZep4ZzzxNUbwkeEmoIO-2fgqj7pc7P8ISE4qJqB8Vp0TScsFLTB_fu58Uz2LcYlzRmvOnxUnJMeeUVKdF9wO6Acakk_Mj8i1KG0CrfooJAli0gr6P6LdLG3S5S25wf_Lwo59Gq8MNOocE5kB0I_oGXRa5BvR9o2PW8GMKOia0HnQH8XnxpNV9hBfzeVb8-vzp5-rr4uLyy3r14WJhqpKnhWAtq6ypG2lJXWFKZGlbKbGuCNESOMZSWM0oWA24ZQTLlpXclNQ2IqMJPSteH3V3vY9q3lFUhNeiLrMkzYj1EWG93qpdcEOOorx26jDwoVM6JGd6UFCJsm6ZaKFqWCNoAwSkMbWQQpCqsVnr_fzb1AxgDewz9w9EH76MbqM6f60Y4wLXe7tvZ4HgryaISQ0umrx0PYKfDr4lJZhxnKFv_oH-Px07okzwMQZo78wQrPa9uWWpfW_U3JtMe3U_yB3ptij0L_jgwWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687821853</pqid></control><display><type>article</type><title>Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Wang, Yuliang ; Zhang, Zaicheng ; Wang, Huimin ; Bi, Shusheng</creator><creatorcontrib>Wang, Yuliang ; Zhang, Zaicheng ; Wang, Huimin ; Bi, Shusheng</creatorcontrib><description>Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0130178</identifier><identifier>PMID: 26066315</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biological effects ; Boundaries ; Cell Count ; Cell Line ; Cell Shape - physiology ; Cell Size ; Field of view ; Humans ; Image contrast ; Image detection ; Image processing ; Image segmentation ; International conferences ; Light ; Light intensity ; Luminous intensity ; Mechanical engineering ; Medical imaging ; Methods ; Microscopy ; Microscopy, Phase-Contrast - methods ; Morphology ; Phase contrast ; Reproducibility of Results ; Robotics ; Segmentation ; Therapeutic applications ; Time-Lapse Imaging - methods</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0130178-e0130178</ispartof><rights>2015 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Wang et al 2015 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-74f45dc8b9d18503192df990a511a9e60097da43edae0f4109f426c23db703113</citedby><cites>FETCH-LOGICAL-c526t-74f45dc8b9d18503192df990a511a9e60097da43edae0f4109f426c23db703113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467081/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467081/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26066315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuliang</creatorcontrib><creatorcontrib>Zhang, Zaicheng</creatorcontrib><creatorcontrib>Wang, Huimin</creatorcontrib><creatorcontrib>Bi, Shusheng</creatorcontrib><title>Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.</description><subject>Algorithms</subject><subject>Biological effects</subject><subject>Boundaries</subject><subject>Cell Count</subject><subject>Cell Line</subject><subject>Cell Shape - physiology</subject><subject>Cell Size</subject><subject>Field of view</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>International conferences</subject><subject>Light</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Mechanical engineering</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Microscopy, Phase-Contrast - methods</subject><subject>Morphology</subject><subject>Phase contrast</subject><subject>Reproducibility of Results</subject><subject>Robotics</subject><subject>Segmentation</subject><subject>Therapeutic applications</subject><subject>Time-Lapse Imaging - methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBCIlsI_QGCJC5dd7Nix4wsSbPlYqaJIwNly7JesV0m8tZ2i8uvx7qZVizjZep4ZzzxNUbwkeEmoIO-2fgqj7pc7P8ISE4qJqB8Vp0TScsFLTB_fu58Uz2LcYlzRmvOnxUnJMeeUVKdF9wO6Acakk_Mj8i1KG0CrfooJAli0gr6P6LdLG3S5S25wf_Lwo59Gq8MNOocE5kB0I_oGXRa5BvR9o2PW8GMKOia0HnQH8XnxpNV9hBfzeVb8-vzp5-rr4uLyy3r14WJhqpKnhWAtq6ypG2lJXWFKZGlbKbGuCNESOMZSWM0oWA24ZQTLlpXclNQ2IqMJPSteH3V3vY9q3lFUhNeiLrMkzYj1EWG93qpdcEOOorx26jDwoVM6JGd6UFCJsm6ZaKFqWCNoAwSkMbWQQpCqsVnr_fzb1AxgDewz9w9EH76MbqM6f60Y4wLXe7tvZ4HgryaISQ0umrx0PYKfDr4lJZhxnKFv_oH-Px07okzwMQZo78wQrPa9uWWpfW_U3JtMe3U_yB3ptij0L_jgwWA</recordid><startdate>20150612</startdate><enddate>20150612</enddate><creator>Wang, Yuliang</creator><creator>Zhang, Zaicheng</creator><creator>Wang, Huimin</creator><creator>Bi, Shusheng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150612</creationdate><title>Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images</title><author>Wang, Yuliang ; Zhang, Zaicheng ; Wang, Huimin ; Bi, Shusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-74f45dc8b9d18503192df990a511a9e60097da43edae0f4109f426c23db703113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biological effects</topic><topic>Boundaries</topic><topic>Cell Count</topic><topic>Cell Line</topic><topic>Cell Shape - physiology</topic><topic>Cell Size</topic><topic>Field of view</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>International conferences</topic><topic>Light</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Mechanical engineering</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Microscopy, Phase-Contrast - methods</topic><topic>Morphology</topic><topic>Phase contrast</topic><topic>Reproducibility of Results</topic><topic>Robotics</topic><topic>Segmentation</topic><topic>Therapeutic applications</topic><topic>Time-Lapse Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuliang</creatorcontrib><creatorcontrib>Zhang, Zaicheng</creatorcontrib><creatorcontrib>Wang, Huimin</creatorcontrib><creatorcontrib>Bi, Shusheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuliang</au><au>Zhang, Zaicheng</au><au>Wang, Huimin</au><au>Bi, Shusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-12</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0130178</spage><epage>e0130178</epage><pages>e0130178-e0130178</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26066315</pmid><doi>10.1371/journal.pone.0130178</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-06, Vol.10 (6), p.e0130178-e0130178
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1687821853
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Biological effects
Boundaries
Cell Count
Cell Line
Cell Shape - physiology
Cell Size
Field of view
Humans
Image contrast
Image detection
Image processing
Image segmentation
International conferences
Light
Light intensity
Luminous intensity
Mechanical engineering
Medical imaging
Methods
Microscopy
Microscopy, Phase-Contrast - methods
Morphology
Phase contrast
Reproducibility of Results
Robotics
Segmentation
Therapeutic applications
Time-Lapse Imaging - methods
title Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20the%20Clustered%20Cells%20with%20Optimized%20Boundary%20Detection%20in%20Negative%20Phase%20Contrast%20Images&rft.jtitle=PloS%20one&rft.au=Wang,%20Yuliang&rft.date=2015-06-12&rft.volume=10&rft.issue=6&rft.spage=e0130178&rft.epage=e0130178&rft.pages=e0130178-e0130178&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0130178&rft_dat=%3Cproquest_plos_%3E1689310460%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687821853&rft_id=info:pmid/26066315&rft_doaj_id=oai_doaj_org_article_e5728f47fe5b4b73be1e9cc8797715bd&rfr_iscdi=true