Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?

Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-06, Vol.10 (6), p.e0129331-e0129331
Hauptverfasser: Carneiro, Renê Gonçalves da Silva, Pacheco, Priscilla, Isaias, Rosy Mary dos Santos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0129331
container_issue 6
container_start_page e0129331
container_title PloS one
container_volume 10
creator Carneiro, Renê Gonçalves da Silva
Pacheco, Priscilla
Isaias, Rosy Mary dos Santos
description Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum-N. cattleianum, and P. myrtoides-N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities.
doi_str_mv 10.1371/journal.pone.0129331
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1686781496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417147601</galeid><doaj_id>oai_doaj_org_article_e9d3a82777a745de936b03899376d7e1</doaj_id><sourcerecordid>A417147601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4ddc403aeb0b2c8478bc117c5d3fbb4f2ff1da8fe9c6dccc4772a11c109144b53</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYqPwDRBEQkLwkGLHrp28gKZqjEqVhhjwajn2pU3l2iV2pu3b47Tp1KA9ID_YPv_uf76zL0leYzTFhONPG9e1VprpzlmYIpyXhOAnyTkuSZ6xHJGnJ-uz5IX3G4RmpGDseXKWs_2SnCdq7jqj07CG9PIugNWg0-9rsC7c746mNLg9MAdjOiPbVEbbTVep434Jt2B82th0YT2okC2s7lRUupLG-C8vk2e1NB5eDfMk-fX18uf8W7a8vlrML5aZYmUeMqq1oohIqFCVq4LyolIYczXTpK4qWud1jbUsaigV00opynkuMVYYlZjSakYmyduD7s44L4b6eIFZwXiBackisTgQ2smN2LXNVrb3wslG7A2uXQnZhkYZEFBqIouccy45nWkoCasQKcqScKY54Kj1eYjWVVvQCmxopRmJjk9ssxYrdysoZQjFp5kkHwaB1v3pwAexbXxfU2nBdft7c8JwXvSZvfsHfTy7gVrJmEBjaxfjql5UXFDMMeUM9feePkLFoWHbqPiZ6ibaRw4fRw6RCXAXVrLzXixufvw_e_17zL4_YdcgTVh7Z7rQOOvHID2AqnXet1A_FBkj0ffCsRqi7wUx9EJ0e3P6QA9Ox89P_gJJ3AOF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686781496</pqid></control><display><type>article</type><title>Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Carneiro, Renê Gonçalves da Silva ; Pacheco, Priscilla ; Isaias, Rosy Mary dos Santos</creator><contributor>Ayele, Belay T.</contributor><creatorcontrib>Carneiro, Renê Gonçalves da Silva ; Pacheco, Priscilla ; Isaias, Rosy Mary dos Santos ; Ayele, Belay T.</creatorcontrib><description>Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum-N. cattleianum, and P. myrtoides-N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0129331</identifier><identifier>PMID: 26053863</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anatomy &amp; physiology ; Animals ; Anisotropy ; Arabinogalactan ; Biology ; Cell death ; Cell division ; Cell Shape ; Cell Size ; Cell Wall - metabolism ; Cell walls ; Cortex ; Cytometry ; Ecology ; Elongation ; Galactans ; Gall ; Galls ; Genotype &amp; phenotype ; Hemiptera ; Homology ; Host plants ; Hypertrophy ; Immunocytochemistry ; Immunohistochemistry ; Insecta - physiology ; Insects ; Leaves ; Morphogenesis ; Myrtaceae ; Organogenesis ; Parenchyma ; Phenotype ; Phenotypes ; Physiology ; Plant Cells - metabolism ; Plant Leaves - metabolism ; Plant tissues ; Plant Tumors - parasitology ; Porosity ; Proteins ; Psidium ; Psidium - metabolism ; Rigidity ; Structure-function relationships ; Subcellular Fractions - metabolism ; Walls</subject><ispartof>PloS one, 2015-06, Vol.10 (6), p.e0129331-e0129331</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Carneiro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Carneiro et al 2015 Carneiro et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4ddc403aeb0b2c8478bc117c5d3fbb4f2ff1da8fe9c6dccc4772a11c109144b53</citedby><cites>FETCH-LOGICAL-c692t-4ddc403aeb0b2c8478bc117c5d3fbb4f2ff1da8fe9c6dccc4772a11c109144b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460019/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460019/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26053863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ayele, Belay T.</contributor><creatorcontrib>Carneiro, Renê Gonçalves da Silva</creatorcontrib><creatorcontrib>Pacheco, Priscilla</creatorcontrib><creatorcontrib>Isaias, Rosy Mary dos Santos</creatorcontrib><title>Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum-N. cattleianum, and P. myrtoides-N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities.</description><subject>Anatomy &amp; physiology</subject><subject>Animals</subject><subject>Anisotropy</subject><subject>Arabinogalactan</subject><subject>Biology</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Cell Shape</subject><subject>Cell Size</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Cortex</subject><subject>Cytometry</subject><subject>Ecology</subject><subject>Elongation</subject><subject>Galactans</subject><subject>Gall</subject><subject>Galls</subject><subject>Genotype &amp; phenotype</subject><subject>Hemiptera</subject><subject>Homology</subject><subject>Host plants</subject><subject>Hypertrophy</subject><subject>Immunocytochemistry</subject><subject>Immunohistochemistry</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>Leaves</subject><subject>Morphogenesis</subject><subject>Myrtaceae</subject><subject>Organogenesis</subject><subject>Parenchyma</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Plant Cells - metabolism</subject><subject>Plant Leaves - metabolism</subject><subject>Plant tissues</subject><subject>Plant Tumors - parasitology</subject><subject>Porosity</subject><subject>Proteins</subject><subject>Psidium</subject><subject>Psidium - metabolism</subject><subject>Rigidity</subject><subject>Structure-function relationships</subject><subject>Subcellular Fractions - metabolism</subject><subject>Walls</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYqPwDRBEQkLwkGLHrp28gKZqjEqVhhjwajn2pU3l2iV2pu3b47Tp1KA9ID_YPv_uf76zL0leYzTFhONPG9e1VprpzlmYIpyXhOAnyTkuSZ6xHJGnJ-uz5IX3G4RmpGDseXKWs_2SnCdq7jqj07CG9PIugNWg0-9rsC7c746mNLg9MAdjOiPbVEbbTVep434Jt2B82th0YT2okC2s7lRUupLG-C8vk2e1NB5eDfMk-fX18uf8W7a8vlrML5aZYmUeMqq1oohIqFCVq4LyolIYczXTpK4qWud1jbUsaigV00opynkuMVYYlZjSakYmyduD7s44L4b6eIFZwXiBackisTgQ2smN2LXNVrb3wslG7A2uXQnZhkYZEFBqIouccy45nWkoCasQKcqScKY54Kj1eYjWVVvQCmxopRmJjk9ssxYrdysoZQjFp5kkHwaB1v3pwAexbXxfU2nBdft7c8JwXvSZvfsHfTy7gVrJmEBjaxfjql5UXFDMMeUM9feePkLFoWHbqPiZ6ibaRw4fRw6RCXAXVrLzXixufvw_e_17zL4_YdcgTVh7Z7rQOOvHID2AqnXet1A_FBkj0ffCsRqi7wUx9EJ0e3P6QA9Ox89P_gJJ3AOF</recordid><startdate>20150608</startdate><enddate>20150608</enddate><creator>Carneiro, Renê Gonçalves da Silva</creator><creator>Pacheco, Priscilla</creator><creator>Isaias, Rosy Mary dos Santos</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150608</creationdate><title>Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?</title><author>Carneiro, Renê Gonçalves da Silva ; Pacheco, Priscilla ; Isaias, Rosy Mary dos Santos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4ddc403aeb0b2c8478bc117c5d3fbb4f2ff1da8fe9c6dccc4772a11c109144b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anatomy &amp; physiology</topic><topic>Animals</topic><topic>Anisotropy</topic><topic>Arabinogalactan</topic><topic>Biology</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Cell Shape</topic><topic>Cell Size</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Cortex</topic><topic>Cytometry</topic><topic>Ecology</topic><topic>Elongation</topic><topic>Galactans</topic><topic>Gall</topic><topic>Galls</topic><topic>Genotype &amp; phenotype</topic><topic>Hemiptera</topic><topic>Homology</topic><topic>Host plants</topic><topic>Hypertrophy</topic><topic>Immunocytochemistry</topic><topic>Immunohistochemistry</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>Leaves</topic><topic>Morphogenesis</topic><topic>Myrtaceae</topic><topic>Organogenesis</topic><topic>Parenchyma</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Plant Cells - metabolism</topic><topic>Plant Leaves - metabolism</topic><topic>Plant tissues</topic><topic>Plant Tumors - parasitology</topic><topic>Porosity</topic><topic>Proteins</topic><topic>Psidium</topic><topic>Psidium - metabolism</topic><topic>Rigidity</topic><topic>Structure-function relationships</topic><topic>Subcellular Fractions - metabolism</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carneiro, Renê Gonçalves da Silva</creatorcontrib><creatorcontrib>Pacheco, Priscilla</creatorcontrib><creatorcontrib>Isaias, Rosy Mary dos Santos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carneiro, Renê Gonçalves da Silva</au><au>Pacheco, Priscilla</au><au>Isaias, Rosy Mary dos Santos</au><au>Ayele, Belay T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-06-08</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>e0129331</spage><epage>e0129331</epage><pages>e0129331-e0129331</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum-N. cattleianum, and P. myrtoides-N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26053863</pmid><doi>10.1371/journal.pone.0129331</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-06, Vol.10 (6), p.e0129331-e0129331
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1686781496
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anatomy & physiology
Animals
Anisotropy
Arabinogalactan
Biology
Cell death
Cell division
Cell Shape
Cell Size
Cell Wall - metabolism
Cell walls
Cortex
Cytometry
Ecology
Elongation
Galactans
Gall
Galls
Genotype & phenotype
Hemiptera
Homology
Host plants
Hypertrophy
Immunocytochemistry
Immunohistochemistry
Insecta - physiology
Insects
Leaves
Morphogenesis
Myrtaceae
Organogenesis
Parenchyma
Phenotype
Phenotypes
Physiology
Plant Cells - metabolism
Plant Leaves - metabolism
Plant tissues
Plant Tumors - parasitology
Porosity
Proteins
Psidium
Psidium - metabolism
Rigidity
Structure-function relationships
Subcellular Fractions - metabolism
Walls
title Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Could%20the%20Extended%20Phenotype%20Extend%20to%20the%20Cellular%20and%20Subcellular%20Levels%20in%20Insect-Induced%20Galls?&rft.jtitle=PloS%20one&rft.au=Carneiro,%20Ren%C3%AA%20Gon%C3%A7alves%20da%20Silva&rft.date=2015-06-08&rft.volume=10&rft.issue=6&rft.spage=e0129331&rft.epage=e0129331&rft.pages=e0129331-e0129331&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0129331&rft_dat=%3Cgale_plos_%3EA417147601%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686781496&rft_id=info:pmid/26053863&rft_galeid=A417147601&rft_doaj_id=oai_doaj_org_article_e9d3a82777a745de936b03899376d7e1&rfr_iscdi=true