The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells
MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating h...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2014-08, Vol.10 (8), p.e1004302-e1004302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004302 |
---|---|
container_issue | 8 |
container_start_page | e1004302 |
container_title | PLoS pathogens |
container_volume | 10 |
creator | O'Flaherty, Brigid M Soni, Tanushree Wakeman, Brian S Speck, Samuel H |
description | MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation. |
doi_str_mv | 10.1371/journal.ppat.1004302 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685193697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382807204</galeid><doaj_id>oai_doaj_org_article_9aada8f46fb94e8d864ef094d1bbf7bc</doaj_id><sourcerecordid>A382807204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-790c8074e0468ff43ec937f414eefd5620e53bbc6d2660993b8c4911d2d478c63</originalsourceid><addsrcrecordid>eNqVktFu0zAUhiMEYqPwBggscQMSLXbsOMkN0jQxqDRAKuPacpzj1FViB9sZKy_Aa-PSblolblAuEjnf-ez8-bPsOcELQkvybuMmb2W_GEcZFwRjRnH-IDslRUHnJS3Zw3vPJ9mTEDaJIZTwx9lJXhBMeM1Ps99Xa0DD5I0F1MlhkGvwI4Rr46eAzDBAa2SEOUjfb9EqShS2FnxnfkFAP01co-Xqgr1FUfoOorEdgpvRQwjGWeQ0ismeXLJHnwkK0whe2mg6sCg6NPYyDBIp6PvwNHukZR_g2eE-y75ffLg6_zS__PpxeX52OVec0jgva6wqXDLAjFdaMwqqpqVmhAHotuA5hoI2jeJtzjmua9pUitWEtHnLyio5ZtnLvXfsXRCHDIMgvCpITXldJmK5J1onN2L0ZpB-K5w04u-C852QPhrVg6ilbGWlGddNzaBqK85A45q1pGl02ajken_YbWpSlApsTFkcSY_fWLMWnbsWjORFToskeH0QePdjghDFYMIuMGnBTencRcLKkpPdl73ao51MRzNWu2RUO1yc0SpPqeWpI7Ns8Q8qXS0MRjkL2qT1o4E3RwOJiXATOzmFIJbfVv_Bfjlm2Z5V3oXgQd-lQrDYFfz254hdwcWh4Gnsxf1E74ZuG03_ACTw-VI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552377616</pqid></control><display><type>article</type><title>The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>O'Flaherty, Brigid M ; Soni, Tanushree ; Wakeman, Brian S ; Speck, Samuel H</creator><contributor>Dittmer, Dirk P.</contributor><creatorcontrib>O'Flaherty, Brigid M ; Soni, Tanushree ; Wakeman, Brian S ; Speck, Samuel H ; Dittmer, Dirk P.</creatorcontrib><description>MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1004302</identifier><identifier>PMID: 25101696</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biological response modifiers ; Biology and Life Sciences ; Cell differentiation ; Cloning ; Electrophoretic Mobility Shift Assay ; Experiments ; Female ; Flow Cytometry ; Gammaherpesvirinae ; Gene expression ; Gene Expression Regulation, Viral ; Genomes ; Genotype & phenotype ; Health aspects ; Herpesviridae Infections - genetics ; Herpesviridae Infections - immunology ; Herpesviridae Infections - metabolism ; Host-Parasite Interactions ; Immediate-Early Proteins ; Immunoprecipitation ; Infections ; Interferon Regulatory Factors ; Lymphocytes ; Mice ; Mice, Inbred C57BL ; Physiological aspects ; Plasma ; Plasma Cells - metabolism ; Plasma Cells - virology ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Studies ; Superantigens - genetics ; Superantigens - metabolism ; T cells ; Viral Proteins - genetics ; Viral Proteins - metabolism ; Virus Activation - physiology ; Virus diseases ; Virus Latency - physiology</subject><ispartof>PLoS pathogens, 2014-08, Vol.10 (8), p.e1004302-e1004302</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 O'Flaherty et al 2014 O'Flaherty et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: O'Flaherty BM, Soni T, Wakeman BS, Speck SH (2014) The Murine Gammaherpesvirus Immediate-Early Rta Synergizes with IRF4, Targeting Expression of the Viral M1 Superantigen to Plasma Cells. PLoS Pathog 10(8): e1004302. doi:10.1371/journal.ppat.1004302</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-790c8074e0468ff43ec937f414eefd5620e53bbc6d2660993b8c4911d2d478c63</citedby><cites>FETCH-LOGICAL-c633t-790c8074e0468ff43ec937f414eefd5620e53bbc6d2660993b8c4911d2d478c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125235/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125235/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25101696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dittmer, Dirk P.</contributor><creatorcontrib>O'Flaherty, Brigid M</creatorcontrib><creatorcontrib>Soni, Tanushree</creatorcontrib><creatorcontrib>Wakeman, Brian S</creatorcontrib><creatorcontrib>Speck, Samuel H</creatorcontrib><title>The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation.</description><subject>Animals</subject><subject>Biological response modifiers</subject><subject>Biology and Life Sciences</subject><subject>Cell differentiation</subject><subject>Cloning</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Experiments</subject><subject>Female</subject><subject>Flow Cytometry</subject><subject>Gammaherpesvirinae</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Viral</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Health aspects</subject><subject>Herpesviridae Infections - genetics</subject><subject>Herpesviridae Infections - immunology</subject><subject>Herpesviridae Infections - metabolism</subject><subject>Host-Parasite Interactions</subject><subject>Immediate-Early Proteins</subject><subject>Immunoprecipitation</subject><subject>Infections</subject><subject>Interferon Regulatory Factors</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Physiological aspects</subject><subject>Plasma</subject><subject>Plasma Cells - metabolism</subject><subject>Plasma Cells - virology</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Studies</subject><subject>Superantigens - genetics</subject><subject>Superantigens - metabolism</subject><subject>T cells</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Virus Activation - physiology</subject><subject>Virus diseases</subject><subject>Virus Latency - physiology</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVktFu0zAUhiMEYqPwBggscQMSLXbsOMkN0jQxqDRAKuPacpzj1FViB9sZKy_Aa-PSblolblAuEjnf-ez8-bPsOcELQkvybuMmb2W_GEcZFwRjRnH-IDslRUHnJS3Zw3vPJ9mTEDaJIZTwx9lJXhBMeM1Ps99Xa0DD5I0F1MlhkGvwI4Rr46eAzDBAa2SEOUjfb9EqShS2FnxnfkFAP01co-Xqgr1FUfoOorEdgpvRQwjGWeQ0ismeXLJHnwkK0whe2mg6sCg6NPYyDBIp6PvwNHukZR_g2eE-y75ffLg6_zS__PpxeX52OVec0jgva6wqXDLAjFdaMwqqpqVmhAHotuA5hoI2jeJtzjmua9pUitWEtHnLyio5ZtnLvXfsXRCHDIMgvCpITXldJmK5J1onN2L0ZpB-K5w04u-C852QPhrVg6ilbGWlGddNzaBqK85A45q1pGl02ajken_YbWpSlApsTFkcSY_fWLMWnbsWjORFToskeH0QePdjghDFYMIuMGnBTencRcLKkpPdl73ao51MRzNWu2RUO1yc0SpPqeWpI7Ns8Q8qXS0MRjkL2qT1o4E3RwOJiXATOzmFIJbfVv_Bfjlm2Z5V3oXgQd-lQrDYFfz254hdwcWh4Gnsxf1E74ZuG03_ACTw-VI</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>O'Flaherty, Brigid M</creator><creator>Soni, Tanushree</creator><creator>Wakeman, Brian S</creator><creator>Speck, Samuel H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140801</creationdate><title>The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells</title><author>O'Flaherty, Brigid M ; Soni, Tanushree ; Wakeman, Brian S ; Speck, Samuel H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-790c8074e0468ff43ec937f414eefd5620e53bbc6d2660993b8c4911d2d478c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological response modifiers</topic><topic>Biology and Life Sciences</topic><topic>Cell differentiation</topic><topic>Cloning</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Experiments</topic><topic>Female</topic><topic>Flow Cytometry</topic><topic>Gammaherpesvirinae</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Viral</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Health aspects</topic><topic>Herpesviridae Infections - genetics</topic><topic>Herpesviridae Infections - immunology</topic><topic>Herpesviridae Infections - metabolism</topic><topic>Host-Parasite Interactions</topic><topic>Immediate-Early Proteins</topic><topic>Immunoprecipitation</topic><topic>Infections</topic><topic>Interferon Regulatory Factors</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Physiological aspects</topic><topic>Plasma</topic><topic>Plasma Cells - metabolism</topic><topic>Plasma Cells - virology</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Studies</topic><topic>Superantigens - genetics</topic><topic>Superantigens - metabolism</topic><topic>T cells</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Virus Activation - physiology</topic><topic>Virus diseases</topic><topic>Virus Latency - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Flaherty, Brigid M</creatorcontrib><creatorcontrib>Soni, Tanushree</creatorcontrib><creatorcontrib>Wakeman, Brian S</creatorcontrib><creatorcontrib>Speck, Samuel H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Flaherty, Brigid M</au><au>Soni, Tanushree</au><au>Wakeman, Brian S</au><au>Speck, Samuel H</au><au>Dittmer, Dirk P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>e1004302</spage><epage>e1004302</epage><pages>e1004302-e1004302</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25101696</pmid><doi>10.1371/journal.ppat.1004302</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2014-08, Vol.10 (8), p.e1004302-e1004302 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1685193697 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Animals Biological response modifiers Biology and Life Sciences Cell differentiation Cloning Electrophoretic Mobility Shift Assay Experiments Female Flow Cytometry Gammaherpesvirinae Gene expression Gene Expression Regulation, Viral Genomes Genotype & phenotype Health aspects Herpesviridae Infections - genetics Herpesviridae Infections - immunology Herpesviridae Infections - metabolism Host-Parasite Interactions Immediate-Early Proteins Immunoprecipitation Infections Interferon Regulatory Factors Lymphocytes Mice Mice, Inbred C57BL Physiological aspects Plasma Plasma Cells - metabolism Plasma Cells - virology Proteins Reverse Transcriptase Polymerase Chain Reaction Studies Superantigens - genetics Superantigens - metabolism T cells Viral Proteins - genetics Viral Proteins - metabolism Virus Activation - physiology Virus diseases Virus Latency - physiology |
title | The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20murine%20gammaherpesvirus%20immediate-early%20Rta%20synergizes%20with%20IRF4,%20targeting%20expression%20of%20the%20viral%20M1%20superantigen%20to%20plasma%20cells&rft.jtitle=PLoS%20pathogens&rft.au=O'Flaherty,%20Brigid%20M&rft.date=2014-08-01&rft.volume=10&rft.issue=8&rft.spage=e1004302&rft.epage=e1004302&rft.pages=e1004302-e1004302&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1004302&rft_dat=%3Cgale_plos_%3EA382807204%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552377616&rft_id=info:pmid/25101696&rft_galeid=A382807204&rft_doaj_id=oai_doaj_org_article_9aada8f46fb94e8d864ef094d1bbf7bc&rfr_iscdi=true |