A sensory-motor control model of animal flight explains why bats fly differently in light versus dark

Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2015-01, Vol.13 (1), p.e1002046-e1002046
Hauptverfasser: Bar, Nadav S, Skogestad, Sigurd, Marçal, Jose M, Ulanovsky, Nachum, Yovel, Yossi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002046
container_issue 1
container_start_page e1002046
container_title PLoS biology
container_volume 13
creator Bar, Nadav S
Skogestad, Sigurd
Marçal, Jose M
Ulanovsky, Nachum
Yovel, Yossi
description Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air.
doi_str_mv 10.1371/journal.pbio.1002046
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685183309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418982851</galeid><doaj_id>oai_doaj_org_article_7615d53842004d43a19d7abf33ba8330</doaj_id><sourcerecordid>A418982851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-72723d86435c54397ee08ce7ff857bfff026b8fcd7e803730af695621033991a3</originalsourceid><addsrcrecordid>eNqVkstuEzEUhkcIREvhDRBYYgOLBN_t2SBFFZdIFZW4bS3P2E4cPOPUninN2-MhadVILEBe2DrnO7_PraqeIzhHRKC3mzimXof5tvFxjiDEkPIH1SlilM2ElOzhvfdJ9STnTWFwjeXj6gQzjmsJ69PKLkC2fY5pN-viEBNoYz-kGEAXjQ0gOqB73-kAXPCr9QDszTZo32fwa70DjR5yceyA8c7ZZPuhvH0P9ui1TXnMwOj082n1yOmQ7bPDfVZ9__D-2_mn2cXlx-X54mLWci6GmcACEyM5JaxllNTCWihbK5yTTDTOOYh5I11rhJWQCAK143UpBUFC6hppcla93OtuQ8zq0KGsEJcMSUJgXYjlnjBRb9Q2ldrSTkXt1R9DTCul0-DbYJXgiBlGJMUQUkOJRrURunGENHoSK1rvDr-NTWdNW-pPOhyJHnt6v1areK1oyYRxXgReHwRSvBptHlTnc2tD0L2N45Q3wxRTRFFBX-3RlS6p-d7FothOuFpQJGuJS4mFmv-FKsfYzpfJWueL_SjgzVHANH17M6z0mLNafv3yH-znf2cvfxyzdM-2KeacrLvrIIJqWvXbQapp1dVh1UvYi_vdvwu63W3yG3-r-Qk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652424141</pqid></control><display><type>article</type><title>A sensory-motor control model of animal flight explains why bats fly differently in light versus dark</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bar, Nadav S ; Skogestad, Sigurd ; Marçal, Jose M ; Ulanovsky, Nachum ; Yovel, Yossi</creator><contributor>Hedenström, Anders</contributor><creatorcontrib>Bar, Nadav S ; Skogestad, Sigurd ; Marçal, Jose M ; Ulanovsky, Nachum ; Yovel, Yossi ; Hedenström, Anders</creatorcontrib><description>Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002046</identifier><identifier>PMID: 25629809</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal flight ; Animals ; Bats ; Chiroptera - physiology ; Comparative analysis ; Control theory ; Experiments ; Feedback, Sensory ; Flight, Animal ; Identification and classification ; Light ; Mathematical models ; Models, Neurological ; Noise ; Perceptual-motor processes ; Physiological aspects ; Psychomotor Performance ; Velocity</subject><ispartof>PLoS biology, 2015-01, Vol.13 (1), p.e1002046-e1002046</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Bar et al 2015 Bar et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bar NS, Skogestad S, Marçal JM, Ulanovsky N, Yovel Y (2015) A Sensory-Motor Control Model of Animal Flight Explains Why Bats Fly Differently in Light Versus Dark. PLoS Biol 13(1): e1002046. doi:10.1371/journal.pbio.1002046</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-72723d86435c54397ee08ce7ff857bfff026b8fcd7e803730af695621033991a3</citedby><cites>FETCH-LOGICAL-c667t-72723d86435c54397ee08ce7ff857bfff026b8fcd7e803730af695621033991a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309566/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309566/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25629809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hedenström, Anders</contributor><creatorcontrib>Bar, Nadav S</creatorcontrib><creatorcontrib>Skogestad, Sigurd</creatorcontrib><creatorcontrib>Marçal, Jose M</creatorcontrib><creatorcontrib>Ulanovsky, Nachum</creatorcontrib><creatorcontrib>Yovel, Yossi</creatorcontrib><title>A sensory-motor control model of animal flight explains why bats fly differently in light versus dark</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air.</description><subject>Animal flight</subject><subject>Animals</subject><subject>Bats</subject><subject>Chiroptera - physiology</subject><subject>Comparative analysis</subject><subject>Control theory</subject><subject>Experiments</subject><subject>Feedback, Sensory</subject><subject>Flight, Animal</subject><subject>Identification and classification</subject><subject>Light</subject><subject>Mathematical models</subject><subject>Models, Neurological</subject><subject>Noise</subject><subject>Perceptual-motor processes</subject><subject>Physiological aspects</subject><subject>Psychomotor Performance</subject><subject>Velocity</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstuEzEUhkcIREvhDRBYYgOLBN_t2SBFFZdIFZW4bS3P2E4cPOPUninN2-MhadVILEBe2DrnO7_PraqeIzhHRKC3mzimXof5tvFxjiDEkPIH1SlilM2ElOzhvfdJ9STnTWFwjeXj6gQzjmsJ69PKLkC2fY5pN-viEBNoYz-kGEAXjQ0gOqB73-kAXPCr9QDszTZo32fwa70DjR5yceyA8c7ZZPuhvH0P9ui1TXnMwOj082n1yOmQ7bPDfVZ9__D-2_mn2cXlx-X54mLWci6GmcACEyM5JaxllNTCWihbK5yTTDTOOYh5I11rhJWQCAK143UpBUFC6hppcla93OtuQ8zq0KGsEJcMSUJgXYjlnjBRb9Q2ldrSTkXt1R9DTCul0-DbYJXgiBlGJMUQUkOJRrURunGENHoSK1rvDr-NTWdNW-pPOhyJHnt6v1areK1oyYRxXgReHwRSvBptHlTnc2tD0L2N45Q3wxRTRFFBX-3RlS6p-d7FothOuFpQJGuJS4mFmv-FKsfYzpfJWueL_SjgzVHANH17M6z0mLNafv3yH-znf2cvfxyzdM-2KeacrLvrIIJqWvXbQapp1dVh1UvYi_vdvwu63W3yG3-r-Qk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Bar, Nadav S</creator><creator>Skogestad, Sigurd</creator><creator>Marçal, Jose M</creator><creator>Ulanovsky, Nachum</creator><creator>Yovel, Yossi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20150101</creationdate><title>A sensory-motor control model of animal flight explains why bats fly differently in light versus dark</title><author>Bar, Nadav S ; Skogestad, Sigurd ; Marçal, Jose M ; Ulanovsky, Nachum ; Yovel, Yossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-72723d86435c54397ee08ce7ff857bfff026b8fcd7e803730af695621033991a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal flight</topic><topic>Animals</topic><topic>Bats</topic><topic>Chiroptera - physiology</topic><topic>Comparative analysis</topic><topic>Control theory</topic><topic>Experiments</topic><topic>Feedback, Sensory</topic><topic>Flight, Animal</topic><topic>Identification and classification</topic><topic>Light</topic><topic>Mathematical models</topic><topic>Models, Neurological</topic><topic>Noise</topic><topic>Perceptual-motor processes</topic><topic>Physiological aspects</topic><topic>Psychomotor Performance</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bar, Nadav S</creatorcontrib><creatorcontrib>Skogestad, Sigurd</creatorcontrib><creatorcontrib>Marçal, Jose M</creatorcontrib><creatorcontrib>Ulanovsky, Nachum</creatorcontrib><creatorcontrib>Yovel, Yossi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bar, Nadav S</au><au>Skogestad, Sigurd</au><au>Marçal, Jose M</au><au>Ulanovsky, Nachum</au><au>Yovel, Yossi</au><au>Hedenström, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sensory-motor control model of animal flight explains why bats fly differently in light versus dark</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>13</volume><issue>1</issue><spage>e1002046</spage><epage>e1002046</epage><pages>e1002046-e1002046</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25629809</pmid><doi>10.1371/journal.pbio.1002046</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2015-01, Vol.13 (1), p.e1002046-e1002046
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1685183309
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animal flight
Animals
Bats
Chiroptera - physiology
Comparative analysis
Control theory
Experiments
Feedback, Sensory
Flight, Animal
Identification and classification
Light
Mathematical models
Models, Neurological
Noise
Perceptual-motor processes
Physiological aspects
Psychomotor Performance
Velocity
title A sensory-motor control model of animal flight explains why bats fly differently in light versus dark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sensory-motor%20control%20model%20of%20animal%20flight%20explains%20why%20bats%20fly%20differently%20in%20light%20versus%20dark&rft.jtitle=PLoS%20biology&rft.au=Bar,%20Nadav%20S&rft.date=2015-01-01&rft.volume=13&rft.issue=1&rft.spage=e1002046&rft.epage=e1002046&rft.pages=e1002046-e1002046&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002046&rft_dat=%3Cgale_plos_%3EA418982851%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652424141&rft_id=info:pmid/25629809&rft_galeid=A418982851&rft_doaj_id=oai_doaj_org_article_7615d53842004d43a19d7abf33ba8330&rfr_iscdi=true