A sensory-motor control model of animal flight explains why bats fly differently in light versus dark
Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reco...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2015-01, Vol.13 (1), p.e1002046-e1002046 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002046 |
---|---|
container_issue | 1 |
container_start_page | e1002046 |
container_title | PLoS biology |
container_volume | 13 |
creator | Bar, Nadav S Skogestad, Sigurd Marçal, Jose M Ulanovsky, Nachum Yovel, Yossi |
description | Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air. |
doi_str_mv | 10.1371/journal.pbio.1002046 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685183309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418982851</galeid><doaj_id>oai_doaj_org_article_7615d53842004d43a19d7abf33ba8330</doaj_id><sourcerecordid>A418982851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-72723d86435c54397ee08ce7ff857bfff026b8fcd7e803730af695621033991a3</originalsourceid><addsrcrecordid>eNqVkstuEzEUhkcIREvhDRBYYgOLBN_t2SBFFZdIFZW4bS3P2E4cPOPUninN2-MhadVILEBe2DrnO7_PraqeIzhHRKC3mzimXof5tvFxjiDEkPIH1SlilM2ElOzhvfdJ9STnTWFwjeXj6gQzjmsJ69PKLkC2fY5pN-viEBNoYz-kGEAXjQ0gOqB73-kAXPCr9QDszTZo32fwa70DjR5yceyA8c7ZZPuhvH0P9ui1TXnMwOj082n1yOmQ7bPDfVZ9__D-2_mn2cXlx-X54mLWci6GmcACEyM5JaxllNTCWihbK5yTTDTOOYh5I11rhJWQCAK143UpBUFC6hppcla93OtuQ8zq0KGsEJcMSUJgXYjlnjBRb9Q2ldrSTkXt1R9DTCul0-DbYJXgiBlGJMUQUkOJRrURunGENHoSK1rvDr-NTWdNW-pPOhyJHnt6v1areK1oyYRxXgReHwRSvBptHlTnc2tD0L2N45Q3wxRTRFFBX-3RlS6p-d7FothOuFpQJGuJS4mFmv-FKsfYzpfJWueL_SjgzVHANH17M6z0mLNafv3yH-znf2cvfxyzdM-2KeacrLvrIIJqWvXbQapp1dVh1UvYi_vdvwu63W3yG3-r-Qk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652424141</pqid></control><display><type>article</type><title>A sensory-motor control model of animal flight explains why bats fly differently in light versus dark</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bar, Nadav S ; Skogestad, Sigurd ; Marçal, Jose M ; Ulanovsky, Nachum ; Yovel, Yossi</creator><contributor>Hedenström, Anders</contributor><creatorcontrib>Bar, Nadav S ; Skogestad, Sigurd ; Marçal, Jose M ; Ulanovsky, Nachum ; Yovel, Yossi ; Hedenström, Anders</creatorcontrib><description>Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002046</identifier><identifier>PMID: 25629809</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal flight ; Animals ; Bats ; Chiroptera - physiology ; Comparative analysis ; Control theory ; Experiments ; Feedback, Sensory ; Flight, Animal ; Identification and classification ; Light ; Mathematical models ; Models, Neurological ; Noise ; Perceptual-motor processes ; Physiological aspects ; Psychomotor Performance ; Velocity</subject><ispartof>PLoS biology, 2015-01, Vol.13 (1), p.e1002046-e1002046</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Bar et al 2015 Bar et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bar NS, Skogestad S, Marçal JM, Ulanovsky N, Yovel Y (2015) A Sensory-Motor Control Model of Animal Flight Explains Why Bats Fly Differently in Light Versus Dark. PLoS Biol 13(1): e1002046. doi:10.1371/journal.pbio.1002046</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-72723d86435c54397ee08ce7ff857bfff026b8fcd7e803730af695621033991a3</citedby><cites>FETCH-LOGICAL-c667t-72723d86435c54397ee08ce7ff857bfff026b8fcd7e803730af695621033991a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309566/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309566/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25629809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hedenström, Anders</contributor><creatorcontrib>Bar, Nadav S</creatorcontrib><creatorcontrib>Skogestad, Sigurd</creatorcontrib><creatorcontrib>Marçal, Jose M</creatorcontrib><creatorcontrib>Ulanovsky, Nachum</creatorcontrib><creatorcontrib>Yovel, Yossi</creatorcontrib><title>A sensory-motor control model of animal flight explains why bats fly differently in light versus dark</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air.</description><subject>Animal flight</subject><subject>Animals</subject><subject>Bats</subject><subject>Chiroptera - physiology</subject><subject>Comparative analysis</subject><subject>Control theory</subject><subject>Experiments</subject><subject>Feedback, Sensory</subject><subject>Flight, Animal</subject><subject>Identification and classification</subject><subject>Light</subject><subject>Mathematical models</subject><subject>Models, Neurological</subject><subject>Noise</subject><subject>Perceptual-motor processes</subject><subject>Physiological aspects</subject><subject>Psychomotor Performance</subject><subject>Velocity</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstuEzEUhkcIREvhDRBYYgOLBN_t2SBFFZdIFZW4bS3P2E4cPOPUninN2-MhadVILEBe2DrnO7_PraqeIzhHRKC3mzimXof5tvFxjiDEkPIH1SlilM2ElOzhvfdJ9STnTWFwjeXj6gQzjmsJ69PKLkC2fY5pN-viEBNoYz-kGEAXjQ0gOqB73-kAXPCr9QDszTZo32fwa70DjR5yceyA8c7ZZPuhvH0P9ui1TXnMwOj082n1yOmQ7bPDfVZ9__D-2_mn2cXlx-X54mLWci6GmcACEyM5JaxllNTCWihbK5yTTDTOOYh5I11rhJWQCAK143UpBUFC6hppcla93OtuQ8zq0KGsEJcMSUJgXYjlnjBRb9Q2ldrSTkXt1R9DTCul0-DbYJXgiBlGJMUQUkOJRrURunGENHoSK1rvDr-NTWdNW-pPOhyJHnt6v1areK1oyYRxXgReHwRSvBptHlTnc2tD0L2N45Q3wxRTRFFBX-3RlS6p-d7FothOuFpQJGuJS4mFmv-FKsfYzpfJWueL_SjgzVHANH17M6z0mLNafv3yH-znf2cvfxyzdM-2KeacrLvrIIJqWvXbQapp1dVh1UvYi_vdvwu63W3yG3-r-Qk</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Bar, Nadav S</creator><creator>Skogestad, Sigurd</creator><creator>Marçal, Jose M</creator><creator>Ulanovsky, Nachum</creator><creator>Yovel, Yossi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20150101</creationdate><title>A sensory-motor control model of animal flight explains why bats fly differently in light versus dark</title><author>Bar, Nadav S ; Skogestad, Sigurd ; Marçal, Jose M ; Ulanovsky, Nachum ; Yovel, Yossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-72723d86435c54397ee08ce7ff857bfff026b8fcd7e803730af695621033991a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal flight</topic><topic>Animals</topic><topic>Bats</topic><topic>Chiroptera - physiology</topic><topic>Comparative analysis</topic><topic>Control theory</topic><topic>Experiments</topic><topic>Feedback, Sensory</topic><topic>Flight, Animal</topic><topic>Identification and classification</topic><topic>Light</topic><topic>Mathematical models</topic><topic>Models, Neurological</topic><topic>Noise</topic><topic>Perceptual-motor processes</topic><topic>Physiological aspects</topic><topic>Psychomotor Performance</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bar, Nadav S</creatorcontrib><creatorcontrib>Skogestad, Sigurd</creatorcontrib><creatorcontrib>Marçal, Jose M</creatorcontrib><creatorcontrib>Ulanovsky, Nachum</creatorcontrib><creatorcontrib>Yovel, Yossi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bar, Nadav S</au><au>Skogestad, Sigurd</au><au>Marçal, Jose M</au><au>Ulanovsky, Nachum</au><au>Yovel, Yossi</au><au>Hedenström, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sensory-motor control model of animal flight explains why bats fly differently in light versus dark</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>13</volume><issue>1</issue><spage>e1002046</spage><epage>e1002046</epage><pages>e1002046-e1002046</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity ("proportional-derivative" controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25629809</pmid><doi>10.1371/journal.pbio.1002046</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2015-01, Vol.13 (1), p.e1002046-e1002046 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1685183309 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animal flight Animals Bats Chiroptera - physiology Comparative analysis Control theory Experiments Feedback, Sensory Flight, Animal Identification and classification Light Mathematical models Models, Neurological Noise Perceptual-motor processes Physiological aspects Psychomotor Performance Velocity |
title | A sensory-motor control model of animal flight explains why bats fly differently in light versus dark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sensory-motor%20control%20model%20of%20animal%20flight%20explains%20why%20bats%20fly%20differently%20in%20light%20versus%20dark&rft.jtitle=PLoS%20biology&rft.au=Bar,%20Nadav%20S&rft.date=2015-01-01&rft.volume=13&rft.issue=1&rft.spage=e1002046&rft.epage=e1002046&rft.pages=e1002046-e1002046&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002046&rft_dat=%3Cgale_plos_%3EA418982851%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652424141&rft_id=info:pmid/25629809&rft_galeid=A418982851&rft_doaj_id=oai_doaj_org_article_7615d53842004d43a19d7abf33ba8330&rfr_iscdi=true |