Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast

Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2015-05, Vol.11 (5), p.e1005206-e1005206
Hauptverfasser: Csárdi, Gábor, Franks, Alexander, Choi, David S, Airoldi, Edoardo M, Drummond, D Allan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005206
container_issue 5
container_start_page e1005206
container_title PLoS genetics
container_volume 11
creator Csárdi, Gábor
Franks, Alexander
Choi, David S
Airoldi, Edoardo M
Drummond, D Allan
description Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
doi_str_mv 10.1371/journal.pgen.1005206
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685147573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418467769</galeid><doaj_id>oai_doaj_org_article_44623f390e4845648aaf06b2d44805b2</doaj_id><sourcerecordid>A418467769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-e039078f3625b1537133fd204369a47f1796b9583dcfb5ee8d81cbebd8fb03c43</originalsourceid><addsrcrecordid>eNqVk9tq3DAQhk1padK0b1BaQaG00N1KlmTLN4Ul9BAICaSHWyHLY68W2XIkOWSfpq9abXYTdqEXLbqQGH3za_g1k2UvCZ4TWpKPKzf5Qdn52MEwJxjzHBePsmPCOZ2VDLPHe-ej7FkIK4wpF1X5NDvKecVxmefH2e-F1m4aohk61DqP4HYEb3oYorJocCYA8nADygYUlyqi_upigWyK2PABqX60pjXQoHqNRhfiLHo1BO3NGI1LxaHROw0hQIKt8h3YNWoggu_NAChEUM16FqKKsCEjmGGnjdJpDSrE59mTNj0OL3b7Sfbzy-cfp99m55dfz04X5zNdVCLOANMKl6KlRc5rwpM_lLZNjhktKsXKlpRVUVdc0Ea3NQcQjSC6hroRbY2pZvQke73VHa0LcudtkKQQnLCSlzQRZ1uicWolx2SS8mvplJF3Aec7qXw02oJkrMhpmyoCJhgvmFCqxUWdN4wJzOs8aX3avTbVPTQ62e2VPRA9vBnMUnbuJinnVAiSBN7tBLy7niBE2ZugwVo1gJvu6sZECJ4a4CR7s0U7lUozQ-uSot7gcsGIYEVZFlWi5n-h0mqgN9oN0JoUP0h4f5CQmAi3sVNTCPLs-9V_sBf_zl7-OmTf7rHL1KVxGZydNs0XDkG2BbV3IXhoH6wmWG6m6f7H5Waa5G6aUtqr_W96SLofH_oHZPUc-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680188555</pqid></control><display><type>article</type><title>Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Csárdi, Gábor ; Franks, Alexander ; Choi, David S ; Airoldi, Edoardo M ; Drummond, D Allan</creator><contributor>Snyder, Michael</contributor><creatorcontrib>Csárdi, Gábor ; Franks, Alexander ; Choi, David S ; Airoldi, Edoardo M ; Drummond, D Allan ; Snyder, Michael</creatorcontrib><description>Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005206</identifier><identifier>PMID: 25950722</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Competition ; Datasets ; Gene Expression Regulation, Fungal ; Genes ; Genetic aspects ; Identification and classification ; Messenger RNA ; Methods ; Models, Genetic ; Noise ; Physiological aspects ; Proteins ; Reproducibility of Results ; RNA Processing, Post-Transcriptional ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Studies ; Transcription (Genetics) ; Transcription, Genetic ; Yeast ; Yeasts (Fungi)</subject><ispartof>PLoS genetics, 2015-05, Vol.11 (5), p.e1005206-e1005206</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Csárdi et al 2015 Csárdi et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA (2015) Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast. PLoS Genet 11(5): e1005206. doi:10.1371/journal.pgen.1005206</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-e039078f3625b1537133fd204369a47f1796b9583dcfb5ee8d81cbebd8fb03c43</citedby><cites>FETCH-LOGICAL-c698t-e039078f3625b1537133fd204369a47f1796b9583dcfb5ee8d81cbebd8fb03c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423881/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423881/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25950722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Snyder, Michael</contributor><creatorcontrib>Csárdi, Gábor</creatorcontrib><creatorcontrib>Franks, Alexander</creatorcontrib><creatorcontrib>Choi, David S</creatorcontrib><creatorcontrib>Airoldi, Edoardo M</creatorcontrib><creatorcontrib>Drummond, D Allan</creatorcontrib><title>Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.</description><subject>Competition</subject><subject>Datasets</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Identification and classification</subject><subject>Messenger RNA</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Noise</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Studies</subject><subject>Transcription (Genetics)</subject><subject>Transcription, Genetic</subject><subject>Yeast</subject><subject>Yeasts (Fungi)</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tq3DAQhk1padK0b1BaQaG00N1KlmTLN4Ul9BAICaSHWyHLY68W2XIkOWSfpq9abXYTdqEXLbqQGH3za_g1k2UvCZ4TWpKPKzf5Qdn52MEwJxjzHBePsmPCOZ2VDLPHe-ej7FkIK4wpF1X5NDvKecVxmefH2e-F1m4aohk61DqP4HYEb3oYorJocCYA8nADygYUlyqi_upigWyK2PABqX60pjXQoHqNRhfiLHo1BO3NGI1LxaHROw0hQIKt8h3YNWoggu_NAChEUM16FqKKsCEjmGGnjdJpDSrE59mTNj0OL3b7Sfbzy-cfp99m55dfz04X5zNdVCLOANMKl6KlRc5rwpM_lLZNjhktKsXKlpRVUVdc0Ea3NQcQjSC6hroRbY2pZvQke73VHa0LcudtkKQQnLCSlzQRZ1uicWolx2SS8mvplJF3Aec7qXw02oJkrMhpmyoCJhgvmFCqxUWdN4wJzOs8aX3avTbVPTQ62e2VPRA9vBnMUnbuJinnVAiSBN7tBLy7niBE2ZugwVo1gJvu6sZECJ4a4CR7s0U7lUozQ-uSot7gcsGIYEVZFlWi5n-h0mqgN9oN0JoUP0h4f5CQmAi3sVNTCPLs-9V_sBf_zl7-OmTf7rHL1KVxGZydNs0XDkG2BbV3IXhoH6wmWG6m6f7H5Waa5G6aUtqr_W96SLofH_oHZPUc-A</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Csárdi, Gábor</creator><creator>Franks, Alexander</creator><creator>Choi, David S</creator><creator>Airoldi, Edoardo M</creator><creator>Drummond, D Allan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150501</creationdate><title>Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast</title><author>Csárdi, Gábor ; Franks, Alexander ; Choi, David S ; Airoldi, Edoardo M ; Drummond, D Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-e039078f3625b1537133fd204369a47f1796b9583dcfb5ee8d81cbebd8fb03c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Competition</topic><topic>Datasets</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Identification and classification</topic><topic>Messenger RNA</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Noise</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Studies</topic><topic>Transcription (Genetics)</topic><topic>Transcription, Genetic</topic><topic>Yeast</topic><topic>Yeasts (Fungi)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Csárdi, Gábor</creatorcontrib><creatorcontrib>Franks, Alexander</creatorcontrib><creatorcontrib>Choi, David S</creatorcontrib><creatorcontrib>Airoldi, Edoardo M</creatorcontrib><creatorcontrib>Drummond, D Allan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Csárdi, Gábor</au><au>Franks, Alexander</au><au>Choi, David S</au><au>Airoldi, Edoardo M</au><au>Drummond, D Allan</au><au>Snyder, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>11</volume><issue>5</issue><spage>e1005206</spage><epage>e1005206</epage><pages>e1005206-e1005206</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25950722</pmid><doi>10.1371/journal.pgen.1005206</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2015-05, Vol.11 (5), p.e1005206-e1005206
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1685147573
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Competition
Datasets
Gene Expression Regulation, Fungal
Genes
Genetic aspects
Identification and classification
Messenger RNA
Methods
Models, Genetic
Noise
Physiological aspects
Proteins
Reproducibility of Results
RNA Processing, Post-Transcriptional
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Studies
Transcription (Genetics)
Transcription, Genetic
Yeast
Yeasts (Fungi)
title Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20experimental%20noise%20reveals%20that%20mRNA%20levels,%20amplified%20by%20post-transcriptional%20processes,%20largely%20determine%20steady-state%20protein%20levels%20in%20yeast&rft.jtitle=PLoS%20genetics&rft.au=Cs%C3%A1rdi,%20G%C3%A1bor&rft.date=2015-05-01&rft.volume=11&rft.issue=5&rft.spage=e1005206&rft.epage=e1005206&rft.pages=e1005206-e1005206&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005206&rft_dat=%3Cgale_plos_%3EA418467769%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680188555&rft_id=info:pmid/25950722&rft_galeid=A418467769&rft_doaj_id=oai_doaj_org_article_44623f390e4845648aaf06b2d44805b2&rfr_iscdi=true