A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex
The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-assoc...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2015-03, Vol.11 (3), p.e1005036 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e1005036 |
container_title | PLoS genetics |
container_volume | 11 |
creator | Orgil, Ola Matityahu, Avi Eng, Thomas Guacci, Vincent Koshland, Douglas Onn, Itay |
description | The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation. |
doi_str_mv | 10.1371/journal.pgen.1005036 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685140811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418465177</galeid><doaj_id>oai_doaj_org_article_a63c9771bf9b43a48bfaae1dea76198b</doaj_id><sourcerecordid>A418465177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-7b91a814ed1c892cf5ac790644d4e958300dbba29fe57455824dd2be8628becc3</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D0QLguDFjEmbtOnNwrD4MbC44NdtOElOpxnaZmjSdfz3Zr6WKXihtDRpzvO-ISdvkrykZE7zkr5fu3HooZ1vVtjPKSGc5MWj5JJyns9KRtjjs_lF8sz7NSE5F1X5NLnIeMmEyMhlsl2k2vUeh3s0qXEd2D6Nb2gw9VrnqR_V2NuQujpyDfpY69BYCOj3kO0DDqCDdX36y4YmVS5-Om1oCr3ZIydd68DgEH-7TYvb58mTGlqPL47jVfLj44fvN59nt3efljeL25kuKhFmpaooCMrQUC2qTNccdFmRgjHDsOIiJ8QoBVlVYzwT5yJjxmQKRZEJhfEEV8nrg--mdV4em-YlLQSnjAhKI7E8EMbBWm4G28HwWzqwcr_ghpWEIVjdooQi11VZUlVXiuXAhKoBkBqEsqCVUNHr-rjbqGKfNPZhgHZiOq30tpErdy9ZzjPCWDR4czBYQdzP9rWLmO6s13LBqGAFp2UZqflfqPgY7Gy8T6xtXJ8I3k0EkQm4DSsYvZfLb1__g_3y7-zdzyn79oxtENrQeNeOu-z4KcgOoB6c9wPWD_2jRO6yf7pGucu-PGY_yl6d9_5BdAp7_ge15QAx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Orgil, Ola ; Matityahu, Avi ; Eng, Thomas ; Guacci, Vincent ; Koshland, Douglas ; Onn, Itay</creator><contributor>Jessberger, Rolf</contributor><creatorcontrib>Orgil, Ola ; Matityahu, Avi ; Eng, Thomas ; Guacci, Vincent ; Koshland, Douglas ; Onn, Itay ; Jessberger, Rolf</creatorcontrib><description>The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005036</identifier><identifier>PMID: 25748820</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acid sequencing ; Cancer ; Cell cycle ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Nucleus - genetics ; Chromatids - genetics ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosome Segregation - genetics ; Chromosomes ; Chromosomes, Fungal - genetics ; Cohesins ; Deoxyribonucleic acid ; DNA ; DNA Repair - genetics ; Experiments ; Flow cytometry ; Gene expression ; Genomes ; Identification and classification ; Methods ; Microscopy ; Mutagenesis ; Mutation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Physiological aspects ; Protein structure ; Protein Structure, Tertiary ; Proteins ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>PLoS genetics, 2015-03, Vol.11 (3), p.e1005036</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Orgil et al 2015 Orgil et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Orgil O, Matityahu A, Eng T, Guacci V, Koshland D, Onn I (2015) A Conserved Domain in the Scc3 Subunit of Cohesin Mediates the Interaction with Both Mcd1 and the Cohesin Loader Complex. PLoS Genet 11(3): e1005036. doi:10.1371/journal.pgen.1005036</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-7b91a814ed1c892cf5ac790644d4e958300dbba29fe57455824dd2be8628becc3</citedby><cites>FETCH-LOGICAL-c698t-7b91a814ed1c892cf5ac790644d4e958300dbba29fe57455824dd2be8628becc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352044/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352044/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25748820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jessberger, Rolf</contributor><creatorcontrib>Orgil, Ola</creatorcontrib><creatorcontrib>Matityahu, Avi</creatorcontrib><creatorcontrib>Eng, Thomas</creatorcontrib><creatorcontrib>Guacci, Vincent</creatorcontrib><creatorcontrib>Koshland, Douglas</creatorcontrib><creatorcontrib>Onn, Itay</creatorcontrib><title>A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.</description><subject>Amino acid sequencing</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Nucleus - genetics</subject><subject>Chromatids - genetics</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosome Segregation - genetics</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Cohesins</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Repair - genetics</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Identification and classification</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Physiological aspects</subject><subject>Protein structure</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D0QLguDFjEmbtOnNwrD4MbC44NdtOElOpxnaZmjSdfz3Zr6WKXihtDRpzvO-ISdvkrykZE7zkr5fu3HooZ1vVtjPKSGc5MWj5JJyns9KRtjjs_lF8sz7NSE5F1X5NLnIeMmEyMhlsl2k2vUeh3s0qXEd2D6Nb2gw9VrnqR_V2NuQujpyDfpY69BYCOj3kO0DDqCDdX36y4YmVS5-Om1oCr3ZIydd68DgEH-7TYvb58mTGlqPL47jVfLj44fvN59nt3efljeL25kuKhFmpaooCMrQUC2qTNccdFmRgjHDsOIiJ8QoBVlVYzwT5yJjxmQKRZEJhfEEV8nrg--mdV4em-YlLQSnjAhKI7E8EMbBWm4G28HwWzqwcr_ghpWEIVjdooQi11VZUlVXiuXAhKoBkBqEsqCVUNHr-rjbqGKfNPZhgHZiOq30tpErdy9ZzjPCWDR4czBYQdzP9rWLmO6s13LBqGAFp2UZqflfqPgY7Gy8T6xtXJ8I3k0EkQm4DSsYvZfLb1__g_3y7-zdzyn79oxtENrQeNeOu-z4KcgOoB6c9wPWD_2jRO6yf7pGucu-PGY_yl6d9_5BdAp7_ge15QAx</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Orgil, Ola</creator><creator>Matityahu, Avi</creator><creator>Eng, Thomas</creator><creator>Guacci, Vincent</creator><creator>Koshland, Douglas</creator><creator>Onn, Itay</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150301</creationdate><title>A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex</title><author>Orgil, Ola ; Matityahu, Avi ; Eng, Thomas ; Guacci, Vincent ; Koshland, Douglas ; Onn, Itay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-7b91a814ed1c892cf5ac790644d4e958300dbba29fe57455824dd2be8628becc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino acid sequencing</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Nucleus - genetics</topic><topic>Chromatids - genetics</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosome Segregation - genetics</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Cohesins</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Repair - genetics</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Identification and classification</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Physiological aspects</topic><topic>Protein structure</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orgil, Ola</creatorcontrib><creatorcontrib>Matityahu, Avi</creatorcontrib><creatorcontrib>Eng, Thomas</creatorcontrib><creatorcontrib>Guacci, Vincent</creatorcontrib><creatorcontrib>Koshland, Douglas</creatorcontrib><creatorcontrib>Onn, Itay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orgil, Ola</au><au>Matityahu, Avi</au><au>Eng, Thomas</au><au>Guacci, Vincent</au><au>Koshland, Douglas</au><au>Onn, Itay</au><au>Jessberger, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>11</volume><issue>3</issue><spage>e1005036</spage><pages>e1005036-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25748820</pmid><doi>10.1371/journal.pgen.1005036</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2015-03, Vol.11 (3), p.e1005036 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1685140811 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino acid sequencing Cancer Cell cycle Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Nucleus - genetics Chromatids - genetics Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Chromosome Segregation - genetics Chromosomes Chromosomes, Fungal - genetics Cohesins Deoxyribonucleic acid DNA DNA Repair - genetics Experiments Flow cytometry Gene expression Genomes Identification and classification Methods Microscopy Mutagenesis Mutation Nuclear Proteins - genetics Nuclear Proteins - metabolism Physiological aspects Protein structure Protein Structure, Tertiary Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism |
title | A conserved domain in the scc3 subunit of cohesin mediates the interaction with both mcd1 and the cohesin loader complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conserved%20domain%20in%20the%20scc3%20subunit%20of%20cohesin%20mediates%20the%20interaction%20with%20both%20mcd1%20and%20the%20cohesin%20loader%20complex&rft.jtitle=PLoS%20genetics&rft.au=Orgil,%20Ola&rft.date=2015-03-01&rft.volume=11&rft.issue=3&rft.spage=e1005036&rft.pages=e1005036-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005036&rft_dat=%3Cgale_plos_%3EA418465177%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25748820&rft_galeid=A418465177&rft_doaj_id=oai_doaj_org_article_a63c9771bf9b43a48bfaae1dea76198b&rfr_iscdi=true |