Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant
Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2014-12, Vol.10 (12), p.e1004824-e1004824 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004824 |
---|---|
container_issue | 12 |
container_start_page | e1004824 |
container_title | PLoS genetics |
container_volume | 10 |
creator | Wartenberg, Anja Linde, Jörg Martin, Ronny Schreiner, Maria Horn, Fabian Jacobsen, Ilse D Jenull, Sabrina Wolf, Thomas Kuchler, Karl Guthke, Reinhard Kurzai, Oliver Forche, Anja d'Enfert, Christophe Brunke, Sascha Hube, Bernhard |
description | Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure. |
doi_str_mv | 10.1371/journal.pgen.1004824 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685136194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A396767625</galeid><doaj_id>oai_doaj_org_article_0fb2b6e4e6d941e7b607049d78b866fd</doaj_id><sourcerecordid>A396767625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c736t-2dffe5dcec041c97242385596fb781a84781ae7ff05b42601ed5115cccc9d6743</originalsourceid><addsrcrecordid>eNqVk1uL1DAUx4so7rr6DUQLgujDjEmbS_siDIO6A6ML3l5Dmp7MZGiTsUkH_famO51lKj5oAmk5-f1PknNJkqcYzXHO8Zud6zsrm_l-A3aOESJFRu4ll5jSfMYJIvfP_i-SR97vEMppUfKHyUVGSTSj8jJRH43qHBxc0wfjbOp0upS2NrVMZVMZJa1PjU1bGan9Vm7Apx344OKSatPIFmyQt8pIydQ6e7K63qdtH6QNj5MHWjYenozfq-Tb-3dfl9ez9c2H1XKxnimeszDLaq2B1goUIliVPCNZXlBaMl3xAsuCDCtwrRGtSMYQhppiTFUcZc04ya-S50e_-8Z5McbHC8wKinOGy4FYHYnayZ3Yd6aV3S_hpBG3BtdthOyCUQ0IpKusYkCA1SXBwCuGOCJlzYuqYEzX0dfb8bS-aiFe24ZONhOn0x1rtmLjDoJklGGOo4PZ0cH2D9n1Yi320gfoO4EwxQXJssPAvxoP7NyPPiZBtMYraBppIQY7vjMnWYF5WUT0xRHdyPgUY7WLN1ADLhZ5yXicGY3U_C9UnDW0RjkLMZUwFbyeCCIT4GfYyN57sfry-T_YT__O3nyfsi_P2C3IJmz9WL1-CpIjGCvX-w70XYwxEkMHnSpEDB0kxg6Ksmfnab0TnVom_w1GSBbH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634281798</pqid></control><display><type>article</type><title>Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Wartenberg, Anja ; Linde, Jörg ; Martin, Ronny ; Schreiner, Maria ; Horn, Fabian ; Jacobsen, Ilse D ; Jenull, Sabrina ; Wolf, Thomas ; Kuchler, Karl ; Guthke, Reinhard ; Kurzai, Oliver ; Forche, Anja ; d'Enfert, Christophe ; Brunke, Sascha ; Hube, Bernhard</creator><creatorcontrib>Wartenberg, Anja ; Linde, Jörg ; Martin, Ronny ; Schreiner, Maria ; Horn, Fabian ; Jacobsen, Ilse D ; Jenull, Sabrina ; Wolf, Thomas ; Kuchler, Karl ; Guthke, Reinhard ; Kurzai, Oliver ; Forche, Anja ; d'Enfert, Christophe ; Brunke, Sascha ; Hube, Bernhard</creatorcontrib><description>Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1004824</identifier><identifier>PMID: 25474009</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Candida albicans ; Candida albicans - genetics ; Candida albicans - pathogenicity ; Candidiasis ; Candidiasis - microbiology ; Candidiasis - mortality ; Cell Wall ; Cell Wall - genetics ; Cell Wall - metabolism ; Cells, Cultured ; Directed Molecular Evolution ; Drug resistance ; Experiments ; Fungi ; Gene expression ; Gene Expression Regulation, Fungal ; Gene mutations ; Genetic aspects ; Genetic research ; Genetic Variation ; Genomes ; Hyphae ; Hyphae - genetics ; Hyphae - pathogenicity ; Infections ; Infectious diseases ; Life Sciences ; Macrophages ; Macrophages - metabolism ; Macrophages - microbiology ; Medicine and Health Sciences ; Mice ; Mice, Inbred BALB C ; Microbiological research ; Microbiology and Parasitology ; Mortality ; Mycology ; Organisms, Genetically Modified ; Research and Analysis Methods ; Transcription factors ; Virulence ; Virulence - genetics</subject><ispartof>PLoS genetics, 2014-12, Vol.10 (12), p.e1004824-e1004824</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>Attribution</rights><rights>2014 Wartenberg et al 2014 Wartenberg et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: in Macrophages Restores Filamentation in a Nonfilamentous Mutant. PLoS Genet 10(12): e1004824. doi:10.1371/journal.pgen.1004824</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c736t-2dffe5dcec041c97242385596fb781a84781ae7ff05b42601ed5115cccc9d6743</citedby><cites>FETCH-LOGICAL-c736t-2dffe5dcec041c97242385596fb781a84781ae7ff05b42601ed5115cccc9d6743</cites><orcidid>0000-0002-6235-3886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256171/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256171/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25474009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-01518422$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wartenberg, Anja</creatorcontrib><creatorcontrib>Linde, Jörg</creatorcontrib><creatorcontrib>Martin, Ronny</creatorcontrib><creatorcontrib>Schreiner, Maria</creatorcontrib><creatorcontrib>Horn, Fabian</creatorcontrib><creatorcontrib>Jacobsen, Ilse D</creatorcontrib><creatorcontrib>Jenull, Sabrina</creatorcontrib><creatorcontrib>Wolf, Thomas</creatorcontrib><creatorcontrib>Kuchler, Karl</creatorcontrib><creatorcontrib>Guthke, Reinhard</creatorcontrib><creatorcontrib>Kurzai, Oliver</creatorcontrib><creatorcontrib>Forche, Anja</creatorcontrib><creatorcontrib>d'Enfert, Christophe</creatorcontrib><creatorcontrib>Brunke, Sascha</creatorcontrib><creatorcontrib>Hube, Bernhard</creatorcontrib><title>Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Candida albicans</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - pathogenicity</subject><subject>Candidiasis</subject><subject>Candidiasis - microbiology</subject><subject>Candidiasis - mortality</subject><subject>Cell Wall</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Cells, Cultured</subject><subject>Directed Molecular Evolution</subject><subject>Drug resistance</subject><subject>Experiments</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic Variation</subject><subject>Genomes</subject><subject>Hyphae</subject><subject>Hyphae - genetics</subject><subject>Hyphae - pathogenicity</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Life Sciences</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microbiological research</subject><subject>Microbiology and Parasitology</subject><subject>Mortality</subject><subject>Mycology</subject><subject>Organisms, Genetically Modified</subject><subject>Research and Analysis Methods</subject><subject>Transcription factors</subject><subject>Virulence</subject><subject>Virulence - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1uL1DAUx4so7rr6DUQLgujDjEmbS_siDIO6A6ML3l5Dmp7MZGiTsUkH_famO51lKj5oAmk5-f1PknNJkqcYzXHO8Zud6zsrm_l-A3aOESJFRu4ll5jSfMYJIvfP_i-SR97vEMppUfKHyUVGSTSj8jJRH43qHBxc0wfjbOp0upS2NrVMZVMZJa1PjU1bGan9Vm7Apx344OKSatPIFmyQt8pIydQ6e7K63qdtH6QNj5MHWjYenozfq-Tb-3dfl9ez9c2H1XKxnimeszDLaq2B1goUIliVPCNZXlBaMl3xAsuCDCtwrRGtSMYQhppiTFUcZc04ya-S50e_-8Z5McbHC8wKinOGy4FYHYnayZ3Yd6aV3S_hpBG3BtdthOyCUQ0IpKusYkCA1SXBwCuGOCJlzYuqYEzX0dfb8bS-aiFe24ZONhOn0x1rtmLjDoJklGGOo4PZ0cH2D9n1Yi320gfoO4EwxQXJssPAvxoP7NyPPiZBtMYraBppIQY7vjMnWYF5WUT0xRHdyPgUY7WLN1ADLhZ5yXicGY3U_C9UnDW0RjkLMZUwFbyeCCIT4GfYyN57sfry-T_YT__O3nyfsi_P2C3IJmz9WL1-CpIjGCvX-w70XYwxEkMHnSpEDB0kxg6Ksmfnab0TnVom_w1GSBbH</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Wartenberg, Anja</creator><creator>Linde, Jörg</creator><creator>Martin, Ronny</creator><creator>Schreiner, Maria</creator><creator>Horn, Fabian</creator><creator>Jacobsen, Ilse D</creator><creator>Jenull, Sabrina</creator><creator>Wolf, Thomas</creator><creator>Kuchler, Karl</creator><creator>Guthke, Reinhard</creator><creator>Kurzai, Oliver</creator><creator>Forche, Anja</creator><creator>d'Enfert, Christophe</creator><creator>Brunke, Sascha</creator><creator>Hube, Bernhard</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6235-3886</orcidid></search><sort><creationdate>20141201</creationdate><title>Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant</title><author>Wartenberg, Anja ; Linde, Jörg ; Martin, Ronny ; Schreiner, Maria ; Horn, Fabian ; Jacobsen, Ilse D ; Jenull, Sabrina ; Wolf, Thomas ; Kuchler, Karl ; Guthke, Reinhard ; Kurzai, Oliver ; Forche, Anja ; d'Enfert, Christophe ; Brunke, Sascha ; Hube, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c736t-2dffe5dcec041c97242385596fb781a84781ae7ff05b42601ed5115cccc9d6743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Candida albicans</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - pathogenicity</topic><topic>Candidiasis</topic><topic>Candidiasis - microbiology</topic><topic>Candidiasis - mortality</topic><topic>Cell Wall</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Cells, Cultured</topic><topic>Directed Molecular Evolution</topic><topic>Drug resistance</topic><topic>Experiments</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic Variation</topic><topic>Genomes</topic><topic>Hyphae</topic><topic>Hyphae - genetics</topic><topic>Hyphae - pathogenicity</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Life Sciences</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microbiological research</topic><topic>Microbiology and Parasitology</topic><topic>Mortality</topic><topic>Mycology</topic><topic>Organisms, Genetically Modified</topic><topic>Research and Analysis Methods</topic><topic>Transcription factors</topic><topic>Virulence</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wartenberg, Anja</creatorcontrib><creatorcontrib>Linde, Jörg</creatorcontrib><creatorcontrib>Martin, Ronny</creatorcontrib><creatorcontrib>Schreiner, Maria</creatorcontrib><creatorcontrib>Horn, Fabian</creatorcontrib><creatorcontrib>Jacobsen, Ilse D</creatorcontrib><creatorcontrib>Jenull, Sabrina</creatorcontrib><creatorcontrib>Wolf, Thomas</creatorcontrib><creatorcontrib>Kuchler, Karl</creatorcontrib><creatorcontrib>Guthke, Reinhard</creatorcontrib><creatorcontrib>Kurzai, Oliver</creatorcontrib><creatorcontrib>Forche, Anja</creatorcontrib><creatorcontrib>d'Enfert, Christophe</creatorcontrib><creatorcontrib>Brunke, Sascha</creatorcontrib><creatorcontrib>Hube, Bernhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wartenberg, Anja</au><au>Linde, Jörg</au><au>Martin, Ronny</au><au>Schreiner, Maria</au><au>Horn, Fabian</au><au>Jacobsen, Ilse D</au><au>Jenull, Sabrina</au><au>Wolf, Thomas</au><au>Kuchler, Karl</au><au>Guthke, Reinhard</au><au>Kurzai, Oliver</au><au>Forche, Anja</au><au>d'Enfert, Christophe</au><au>Brunke, Sascha</au><au>Hube, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>10</volume><issue>12</issue><spage>e1004824</spage><epage>e1004824</epage><pages>e1004824-e1004824</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25474009</pmid><doi>10.1371/journal.pgen.1004824</doi><orcidid>https://orcid.org/0000-0002-6235-3886</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2014-12, Vol.10 (12), p.e1004824-e1004824 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1685136194 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Animals Biology and Life Sciences Candida albicans Candida albicans - genetics Candida albicans - pathogenicity Candidiasis Candidiasis - microbiology Candidiasis - mortality Cell Wall Cell Wall - genetics Cell Wall - metabolism Cells, Cultured Directed Molecular Evolution Drug resistance Experiments Fungi Gene expression Gene Expression Regulation, Fungal Gene mutations Genetic aspects Genetic research Genetic Variation Genomes Hyphae Hyphae - genetics Hyphae - pathogenicity Infections Infectious diseases Life Sciences Macrophages Macrophages - metabolism Macrophages - microbiology Medicine and Health Sciences Mice Mice, Inbred BALB C Microbiological research Microbiology and Parasitology Mortality Mycology Organisms, Genetically Modified Research and Analysis Methods Transcription factors Virulence Virulence - genetics |
title | Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microevolution%20of%20Candida%20albicans%20in%20macrophages%20restores%20filamentation%20in%20a%20nonfilamentous%20mutant&rft.jtitle=PLoS%20genetics&rft.au=Wartenberg,%20Anja&rft.date=2014-12-01&rft.volume=10&rft.issue=12&rft.spage=e1004824&rft.epage=e1004824&rft.pages=e1004824-e1004824&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1004824&rft_dat=%3Cgale_plos_%3EA396767625%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634281798&rft_id=info:pmid/25474009&rft_galeid=A396767625&rft_doaj_id=oai_doaj_org_article_0fb2b6e4e6d941e7b607049d78b866fd&rfr_iscdi=true |