Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant

Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2014-12, Vol.10 (12), p.e1004824-e1004824
Hauptverfasser: Wartenberg, Anja, Linde, Jörg, Martin, Ronny, Schreiner, Maria, Horn, Fabian, Jacobsen, Ilse D, Jenull, Sabrina, Wolf, Thomas, Kuchler, Karl, Guthke, Reinhard, Kurzai, Oliver, Forche, Anja, d'Enfert, Christophe, Brunke, Sascha, Hube, Bernhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004824
container_issue 12
container_start_page e1004824
container_title PLoS genetics
container_volume 10
creator Wartenberg, Anja
Linde, Jörg
Martin, Ronny
Schreiner, Maria
Horn, Fabian
Jacobsen, Ilse D
Jenull, Sabrina
Wolf, Thomas
Kuchler, Karl
Guthke, Reinhard
Kurzai, Oliver
Forche, Anja
d'Enfert, Christophe
Brunke, Sascha
Hube, Bernhard
description Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.
doi_str_mv 10.1371/journal.pgen.1004824
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685136194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A396767625</galeid><doaj_id>oai_doaj_org_article_0fb2b6e4e6d941e7b607049d78b866fd</doaj_id><sourcerecordid>A396767625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c736t-2dffe5dcec041c97242385596fb781a84781ae7ff05b42601ed5115cccc9d6743</originalsourceid><addsrcrecordid>eNqVk1uL1DAUx4so7rr6DUQLgujDjEmbS_siDIO6A6ML3l5Dmp7MZGiTsUkH_famO51lKj5oAmk5-f1PknNJkqcYzXHO8Zud6zsrm_l-A3aOESJFRu4ll5jSfMYJIvfP_i-SR97vEMppUfKHyUVGSTSj8jJRH43qHBxc0wfjbOp0upS2NrVMZVMZJa1PjU1bGan9Vm7Apx344OKSatPIFmyQt8pIydQ6e7K63qdtH6QNj5MHWjYenozfq-Tb-3dfl9ez9c2H1XKxnimeszDLaq2B1goUIliVPCNZXlBaMl3xAsuCDCtwrRGtSMYQhppiTFUcZc04ya-S50e_-8Z5McbHC8wKinOGy4FYHYnayZ3Yd6aV3S_hpBG3BtdthOyCUQ0IpKusYkCA1SXBwCuGOCJlzYuqYEzX0dfb8bS-aiFe24ZONhOn0x1rtmLjDoJklGGOo4PZ0cH2D9n1Yi320gfoO4EwxQXJssPAvxoP7NyPPiZBtMYraBppIQY7vjMnWYF5WUT0xRHdyPgUY7WLN1ADLhZ5yXicGY3U_C9UnDW0RjkLMZUwFbyeCCIT4GfYyN57sfry-T_YT__O3nyfsi_P2C3IJmz9WL1-CpIjGCvX-w70XYwxEkMHnSpEDB0kxg6Ksmfnab0TnVom_w1GSBbH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634281798</pqid></control><display><type>article</type><title>Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Wartenberg, Anja ; Linde, Jörg ; Martin, Ronny ; Schreiner, Maria ; Horn, Fabian ; Jacobsen, Ilse D ; Jenull, Sabrina ; Wolf, Thomas ; Kuchler, Karl ; Guthke, Reinhard ; Kurzai, Oliver ; Forche, Anja ; d'Enfert, Christophe ; Brunke, Sascha ; Hube, Bernhard</creator><creatorcontrib>Wartenberg, Anja ; Linde, Jörg ; Martin, Ronny ; Schreiner, Maria ; Horn, Fabian ; Jacobsen, Ilse D ; Jenull, Sabrina ; Wolf, Thomas ; Kuchler, Karl ; Guthke, Reinhard ; Kurzai, Oliver ; Forche, Anja ; d'Enfert, Christophe ; Brunke, Sascha ; Hube, Bernhard</creatorcontrib><description>Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1004824</identifier><identifier>PMID: 25474009</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Candida albicans ; Candida albicans - genetics ; Candida albicans - pathogenicity ; Candidiasis ; Candidiasis - microbiology ; Candidiasis - mortality ; Cell Wall ; Cell Wall - genetics ; Cell Wall - metabolism ; Cells, Cultured ; Directed Molecular Evolution ; Drug resistance ; Experiments ; Fungi ; Gene expression ; Gene Expression Regulation, Fungal ; Gene mutations ; Genetic aspects ; Genetic research ; Genetic Variation ; Genomes ; Hyphae ; Hyphae - genetics ; Hyphae - pathogenicity ; Infections ; Infectious diseases ; Life Sciences ; Macrophages ; Macrophages - metabolism ; Macrophages - microbiology ; Medicine and Health Sciences ; Mice ; Mice, Inbred BALB C ; Microbiological research ; Microbiology and Parasitology ; Mortality ; Mycology ; Organisms, Genetically Modified ; Research and Analysis Methods ; Transcription factors ; Virulence ; Virulence - genetics</subject><ispartof>PLoS genetics, 2014-12, Vol.10 (12), p.e1004824-e1004824</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>Attribution</rights><rights>2014 Wartenberg et al 2014 Wartenberg et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: in Macrophages Restores Filamentation in a Nonfilamentous Mutant. PLoS Genet 10(12): e1004824. doi:10.1371/journal.pgen.1004824</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c736t-2dffe5dcec041c97242385596fb781a84781ae7ff05b42601ed5115cccc9d6743</citedby><cites>FETCH-LOGICAL-c736t-2dffe5dcec041c97242385596fb781a84781ae7ff05b42601ed5115cccc9d6743</cites><orcidid>0000-0002-6235-3886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256171/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256171/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25474009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-01518422$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wartenberg, Anja</creatorcontrib><creatorcontrib>Linde, Jörg</creatorcontrib><creatorcontrib>Martin, Ronny</creatorcontrib><creatorcontrib>Schreiner, Maria</creatorcontrib><creatorcontrib>Horn, Fabian</creatorcontrib><creatorcontrib>Jacobsen, Ilse D</creatorcontrib><creatorcontrib>Jenull, Sabrina</creatorcontrib><creatorcontrib>Wolf, Thomas</creatorcontrib><creatorcontrib>Kuchler, Karl</creatorcontrib><creatorcontrib>Guthke, Reinhard</creatorcontrib><creatorcontrib>Kurzai, Oliver</creatorcontrib><creatorcontrib>Forche, Anja</creatorcontrib><creatorcontrib>d'Enfert, Christophe</creatorcontrib><creatorcontrib>Brunke, Sascha</creatorcontrib><creatorcontrib>Hube, Bernhard</creatorcontrib><title>Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Candida albicans</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - pathogenicity</subject><subject>Candidiasis</subject><subject>Candidiasis - microbiology</subject><subject>Candidiasis - mortality</subject><subject>Cell Wall</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Cells, Cultured</subject><subject>Directed Molecular Evolution</subject><subject>Drug resistance</subject><subject>Experiments</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic Variation</subject><subject>Genomes</subject><subject>Hyphae</subject><subject>Hyphae - genetics</subject><subject>Hyphae - pathogenicity</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Life Sciences</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microbiological research</subject><subject>Microbiology and Parasitology</subject><subject>Mortality</subject><subject>Mycology</subject><subject>Organisms, Genetically Modified</subject><subject>Research and Analysis Methods</subject><subject>Transcription factors</subject><subject>Virulence</subject><subject>Virulence - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1uL1DAUx4so7rr6DUQLgujDjEmbS_siDIO6A6ML3l5Dmp7MZGiTsUkH_famO51lKj5oAmk5-f1PknNJkqcYzXHO8Zud6zsrm_l-A3aOESJFRu4ll5jSfMYJIvfP_i-SR97vEMppUfKHyUVGSTSj8jJRH43qHBxc0wfjbOp0upS2NrVMZVMZJa1PjU1bGan9Vm7Apx344OKSatPIFmyQt8pIydQ6e7K63qdtH6QNj5MHWjYenozfq-Tb-3dfl9ez9c2H1XKxnimeszDLaq2B1goUIliVPCNZXlBaMl3xAsuCDCtwrRGtSMYQhppiTFUcZc04ya-S50e_-8Z5McbHC8wKinOGy4FYHYnayZ3Yd6aV3S_hpBG3BtdthOyCUQ0IpKusYkCA1SXBwCuGOCJlzYuqYEzX0dfb8bS-aiFe24ZONhOn0x1rtmLjDoJklGGOo4PZ0cH2D9n1Yi320gfoO4EwxQXJssPAvxoP7NyPPiZBtMYraBppIQY7vjMnWYF5WUT0xRHdyPgUY7WLN1ADLhZ5yXicGY3U_C9UnDW0RjkLMZUwFbyeCCIT4GfYyN57sfry-T_YT__O3nyfsi_P2C3IJmz9WL1-CpIjGCvX-w70XYwxEkMHnSpEDB0kxg6Ksmfnab0TnVom_w1GSBbH</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Wartenberg, Anja</creator><creator>Linde, Jörg</creator><creator>Martin, Ronny</creator><creator>Schreiner, Maria</creator><creator>Horn, Fabian</creator><creator>Jacobsen, Ilse D</creator><creator>Jenull, Sabrina</creator><creator>Wolf, Thomas</creator><creator>Kuchler, Karl</creator><creator>Guthke, Reinhard</creator><creator>Kurzai, Oliver</creator><creator>Forche, Anja</creator><creator>d'Enfert, Christophe</creator><creator>Brunke, Sascha</creator><creator>Hube, Bernhard</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6235-3886</orcidid></search><sort><creationdate>20141201</creationdate><title>Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant</title><author>Wartenberg, Anja ; Linde, Jörg ; Martin, Ronny ; Schreiner, Maria ; Horn, Fabian ; Jacobsen, Ilse D ; Jenull, Sabrina ; Wolf, Thomas ; Kuchler, Karl ; Guthke, Reinhard ; Kurzai, Oliver ; Forche, Anja ; d'Enfert, Christophe ; Brunke, Sascha ; Hube, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c736t-2dffe5dcec041c97242385596fb781a84781ae7ff05b42601ed5115cccc9d6743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Candida albicans</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - pathogenicity</topic><topic>Candidiasis</topic><topic>Candidiasis - microbiology</topic><topic>Candidiasis - mortality</topic><topic>Cell Wall</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Cells, Cultured</topic><topic>Directed Molecular Evolution</topic><topic>Drug resistance</topic><topic>Experiments</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic Variation</topic><topic>Genomes</topic><topic>Hyphae</topic><topic>Hyphae - genetics</topic><topic>Hyphae - pathogenicity</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Life Sciences</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microbiological research</topic><topic>Microbiology and Parasitology</topic><topic>Mortality</topic><topic>Mycology</topic><topic>Organisms, Genetically Modified</topic><topic>Research and Analysis Methods</topic><topic>Transcription factors</topic><topic>Virulence</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wartenberg, Anja</creatorcontrib><creatorcontrib>Linde, Jörg</creatorcontrib><creatorcontrib>Martin, Ronny</creatorcontrib><creatorcontrib>Schreiner, Maria</creatorcontrib><creatorcontrib>Horn, Fabian</creatorcontrib><creatorcontrib>Jacobsen, Ilse D</creatorcontrib><creatorcontrib>Jenull, Sabrina</creatorcontrib><creatorcontrib>Wolf, Thomas</creatorcontrib><creatorcontrib>Kuchler, Karl</creatorcontrib><creatorcontrib>Guthke, Reinhard</creatorcontrib><creatorcontrib>Kurzai, Oliver</creatorcontrib><creatorcontrib>Forche, Anja</creatorcontrib><creatorcontrib>d'Enfert, Christophe</creatorcontrib><creatorcontrib>Brunke, Sascha</creatorcontrib><creatorcontrib>Hube, Bernhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wartenberg, Anja</au><au>Linde, Jörg</au><au>Martin, Ronny</au><au>Schreiner, Maria</au><au>Horn, Fabian</au><au>Jacobsen, Ilse D</au><au>Jenull, Sabrina</au><au>Wolf, Thomas</au><au>Kuchler, Karl</au><au>Guthke, Reinhard</au><au>Kurzai, Oliver</au><au>Forche, Anja</au><au>d'Enfert, Christophe</au><au>Brunke, Sascha</au><au>Hube, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>10</volume><issue>12</issue><spage>e1004824</spage><epage>e1004824</epage><pages>e1004824-e1004824</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25474009</pmid><doi>10.1371/journal.pgen.1004824</doi><orcidid>https://orcid.org/0000-0002-6235-3886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2014-12, Vol.10 (12), p.e1004824-e1004824
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1685136194
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Animals
Biology and Life Sciences
Candida albicans
Candida albicans - genetics
Candida albicans - pathogenicity
Candidiasis
Candidiasis - microbiology
Candidiasis - mortality
Cell Wall
Cell Wall - genetics
Cell Wall - metabolism
Cells, Cultured
Directed Molecular Evolution
Drug resistance
Experiments
Fungi
Gene expression
Gene Expression Regulation, Fungal
Gene mutations
Genetic aspects
Genetic research
Genetic Variation
Genomes
Hyphae
Hyphae - genetics
Hyphae - pathogenicity
Infections
Infectious diseases
Life Sciences
Macrophages
Macrophages - metabolism
Macrophages - microbiology
Medicine and Health Sciences
Mice
Mice, Inbred BALB C
Microbiological research
Microbiology and Parasitology
Mortality
Mycology
Organisms, Genetically Modified
Research and Analysis Methods
Transcription factors
Virulence
Virulence - genetics
title Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microevolution%20of%20Candida%20albicans%20in%20macrophages%20restores%20filamentation%20in%20a%20nonfilamentous%20mutant&rft.jtitle=PLoS%20genetics&rft.au=Wartenberg,%20Anja&rft.date=2014-12-01&rft.volume=10&rft.issue=12&rft.spage=e1004824&rft.epage=e1004824&rft.pages=e1004824-e1004824&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1004824&rft_dat=%3Cgale_plos_%3EA396767625%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634281798&rft_id=info:pmid/25474009&rft_galeid=A396767625&rft_doaj_id=oai_doaj_org_article_0fb2b6e4e6d941e7b607049d78b866fd&rfr_iscdi=true