Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms

The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2014-08, Vol.10 (8), p.e1004506-e1004506
Hauptverfasser: Weber, Christoph, Hartig, Andreas, Hartmann, Roland K, Rossmanith, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004506
container_issue 8
container_start_page e1004506
container_title PLoS genetics
container_volume 10
creator Weber, Christoph
Hartig, Andreas
Hartmann, Roland K
Rossmanith, Walter
description The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.
doi_str_mv 10.1371/journal.pgen.1004506
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685098522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382950657</galeid><doaj_id>oai_doaj_org_article_317e17ba11084e8db0f5e115c985cf67</doaj_id><sourcerecordid>A382950657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-ed64791cc68219bbee526e15848d066eca0a8af7d872b800cef704f42b84069e3</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBYQkJw2MVO4sThgLSq-FipaqvycbUcZ5K4SuLUdhbCjX-Ow6bVRuIA8iHOzPO-mdgzQfCU4DWJUvLmWg-mE826r6BbE4xjipN7wTGhNFqlMY7vH-yPgkfWXmMcUZalD4OjkBJM0iQ6Dn5dNmJUXYWuzoUFdIlgp5vBKd29Rfa76Psp52rw-Q2SwolmtA6V2iCBeqMdqA4Z2IFoLCqHTk5K0aChU55plRuRLlGtqroZUaF2YHy1DkH3c2xhsmnt4-BB6dXwZH6eBF8_vP9y-ml1dvFxe7o5W8kkY24FRRKnGZEyYSHJ8hyAhgkQymJW4CQBKbBgokwLloY5w1hCmeK4jP1LjJMMopPg-d63b7Tl8-lZThJGccZoGHpiuycKLa55b1QrzMi1UPxPQJuKC-OUbIBHJAWS5oIQzGJgRY5LCoRQ6Z1kmaTe6938tSFvoZD-r41oFqbLTKdqXukdj0lIccy8wavZwOibAazjrbISmkZ0oAdfN6VhlEaUZB59sUcr4UtTXam9o5xwvolYmPnGoFNF679QfhXQKqk7KJWPLwSvFwLPOPjhKjFYy7efr_6DPf939uLbkn15wNa-zVxt5wa1SzDeg9Joaw2Ud0dNMJ_m5fbG-TQvfJ4XL3t2eE13otsBiX4DVpURYQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552373519</pqid></control><display><type>article</type><title>Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Weber, Christoph ; Hartig, Andreas ; Hartmann, Roland K ; Rossmanith, Walter</creator><creatorcontrib>Weber, Christoph ; Hartig, Andreas ; Hartmann, Roland K ; Rossmanith, Walter</creatorcontrib><description>The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1004506</identifier><identifier>PMID: 25101763</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Arabidopsis ; Arabidopsis thaliana ; Biology and life sciences ; Catalysis ; Enzymes ; Evolution ; Evolution, Molecular ; Genetic aspects ; Genetic Drift ; Growth rate ; Physiological aspects ; Polypeptides ; Proteins ; Ribonuclease ; Ribonuclease P - genetics ; Ribonuclease P - metabolism ; Ribonucleoproteins - genetics ; Ribonucleoproteins - metabolism ; RNA Precursors - genetics ; RNA Precursors - metabolism ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae ; Transfer RNA</subject><ispartof>PLoS genetics, 2014-08, Vol.10 (8), p.e1004506-e1004506</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Weber et al 2014 Weber et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Weber C, Hartig A, Hartmann RK, Rossmanith W (2014) Playing RNase P Evolution: Swapping the RNA Catalyst for a Protein Reveals Functional Uniformity of Highly Divergent Enzyme Forms. PLoS Genet 10(8): e1004506. doi:10.1371/journal.pgen.1004506</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-ed64791cc68219bbee526e15848d066eca0a8af7d872b800cef704f42b84069e3</citedby><cites>FETCH-LOGICAL-c698t-ed64791cc68219bbee526e15848d066eca0a8af7d872b800cef704f42b84069e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125048/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125048/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25101763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Christoph</creatorcontrib><creatorcontrib>Hartig, Andreas</creatorcontrib><creatorcontrib>Hartmann, Roland K</creatorcontrib><creatorcontrib>Rossmanith, Walter</creatorcontrib><title>Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.</description><subject>Analysis</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Biology and life sciences</subject><subject>Catalysis</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Genetic aspects</subject><subject>Genetic Drift</subject><subject>Growth rate</subject><subject>Physiological aspects</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Ribonuclease</subject><subject>Ribonuclease P - genetics</subject><subject>Ribonuclease P - metabolism</subject><subject>Ribonucleoproteins - genetics</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Transfer RNA</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBYQkJw2MVO4sThgLSq-FipaqvycbUcZ5K4SuLUdhbCjX-Ow6bVRuIA8iHOzPO-mdgzQfCU4DWJUvLmWg-mE826r6BbE4xjipN7wTGhNFqlMY7vH-yPgkfWXmMcUZalD4OjkBJM0iQ6Dn5dNmJUXYWuzoUFdIlgp5vBKd29Rfa76Psp52rw-Q2SwolmtA6V2iCBeqMdqA4Z2IFoLCqHTk5K0aChU55plRuRLlGtqroZUaF2YHy1DkH3c2xhsmnt4-BB6dXwZH6eBF8_vP9y-ml1dvFxe7o5W8kkY24FRRKnGZEyYSHJ8hyAhgkQymJW4CQBKbBgokwLloY5w1hCmeK4jP1LjJMMopPg-d63b7Tl8-lZThJGccZoGHpiuycKLa55b1QrzMi1UPxPQJuKC-OUbIBHJAWS5oIQzGJgRY5LCoRQ6Z1kmaTe6938tSFvoZD-r41oFqbLTKdqXukdj0lIccy8wavZwOibAazjrbISmkZ0oAdfN6VhlEaUZB59sUcr4UtTXam9o5xwvolYmPnGoFNF679QfhXQKqk7KJWPLwSvFwLPOPjhKjFYy7efr_6DPf939uLbkn15wNa-zVxt5wa1SzDeg9Joaw2Ud0dNMJ_m5fbG-TQvfJ4XL3t2eE13otsBiX4DVpURYQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Weber, Christoph</creator><creator>Hartig, Andreas</creator><creator>Hartmann, Roland K</creator><creator>Rossmanith, Walter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140801</creationdate><title>Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms</title><author>Weber, Christoph ; Hartig, Andreas ; Hartmann, Roland K ; Rossmanith, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-ed64791cc68219bbee526e15848d066eca0a8af7d872b800cef704f42b84069e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Biology and life sciences</topic><topic>Catalysis</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Genetic aspects</topic><topic>Genetic Drift</topic><topic>Growth rate</topic><topic>Physiological aspects</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Ribonuclease</topic><topic>Ribonuclease P - genetics</topic><topic>Ribonuclease P - metabolism</topic><topic>Ribonucleoproteins - genetics</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Christoph</creatorcontrib><creatorcontrib>Hartig, Andreas</creatorcontrib><creatorcontrib>Hartmann, Roland K</creatorcontrib><creatorcontrib>Rossmanith, Walter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Christoph</au><au>Hartig, Andreas</au><au>Hartmann, Roland K</au><au>Rossmanith, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>e1004506</spage><epage>e1004506</epage><pages>e1004506-e1004506</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25101763</pmid><doi>10.1371/journal.pgen.1004506</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2014-08, Vol.10 (8), p.e1004506-e1004506
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1685098522
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; PMC (PubMed Central); DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analysis
Arabidopsis
Arabidopsis thaliana
Biology and life sciences
Catalysis
Enzymes
Evolution
Evolution, Molecular
Genetic aspects
Genetic Drift
Growth rate
Physiological aspects
Polypeptides
Proteins
Ribonuclease
Ribonuclease P - genetics
Ribonuclease P - metabolism
Ribonucleoproteins - genetics
Ribonucleoproteins - metabolism
RNA Precursors - genetics
RNA Precursors - metabolism
RNA, Transfer - genetics
RNA, Transfer - metabolism
Saccharomyces cerevisiae
Transfer RNA
title Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Playing%20RNase%20P%20evolution:%20swapping%20the%20RNA%20catalyst%20for%20a%20protein%20reveals%20functional%20uniformity%20of%20highly%20divergent%20enzyme%20forms&rft.jtitle=PLoS%20genetics&rft.au=Weber,%20Christoph&rft.date=2014-08-01&rft.volume=10&rft.issue=8&rft.spage=e1004506&rft.epage=e1004506&rft.pages=e1004506-e1004506&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1004506&rft_dat=%3Cgale_plos_%3EA382950657%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552373519&rft_id=info:pmid/25101763&rft_galeid=A382950657&rft_doaj_id=oai_doaj_org_article_317e17ba11084e8db0f5e115c985cf67&rfr_iscdi=true