Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms
The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-poly...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2014-08, Vol.10 (8), p.e1004506-e1004506 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004506 |
---|---|
container_issue | 8 |
container_start_page | e1004506 |
container_title | PLoS genetics |
container_volume | 10 |
creator | Weber, Christoph Hartig, Andreas Hartmann, Roland K Rossmanith, Walter |
description | The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility. |
doi_str_mv | 10.1371/journal.pgen.1004506 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685098522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382950657</galeid><doaj_id>oai_doaj_org_article_317e17ba11084e8db0f5e115c985cf67</doaj_id><sourcerecordid>A382950657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-ed64791cc68219bbee526e15848d066eca0a8af7d872b800cef704f42b84069e3</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBYQkJw2MVO4sThgLSq-FipaqvycbUcZ5K4SuLUdhbCjX-Ow6bVRuIA8iHOzPO-mdgzQfCU4DWJUvLmWg-mE826r6BbE4xjipN7wTGhNFqlMY7vH-yPgkfWXmMcUZalD4OjkBJM0iQ6Dn5dNmJUXYWuzoUFdIlgp5vBKd29Rfa76Psp52rw-Q2SwolmtA6V2iCBeqMdqA4Z2IFoLCqHTk5K0aChU55plRuRLlGtqroZUaF2YHy1DkH3c2xhsmnt4-BB6dXwZH6eBF8_vP9y-ml1dvFxe7o5W8kkY24FRRKnGZEyYSHJ8hyAhgkQymJW4CQBKbBgokwLloY5w1hCmeK4jP1LjJMMopPg-d63b7Tl8-lZThJGccZoGHpiuycKLa55b1QrzMi1UPxPQJuKC-OUbIBHJAWS5oIQzGJgRY5LCoRQ6Z1kmaTe6938tSFvoZD-r41oFqbLTKdqXukdj0lIccy8wavZwOibAazjrbISmkZ0oAdfN6VhlEaUZB59sUcr4UtTXam9o5xwvolYmPnGoFNF679QfhXQKqk7KJWPLwSvFwLPOPjhKjFYy7efr_6DPf939uLbkn15wNa-zVxt5wa1SzDeg9Joaw2Ud0dNMJ_m5fbG-TQvfJ4XL3t2eE13otsBiX4DVpURYQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552373519</pqid></control><display><type>article</type><title>Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Weber, Christoph ; Hartig, Andreas ; Hartmann, Roland K ; Rossmanith, Walter</creator><creatorcontrib>Weber, Christoph ; Hartig, Andreas ; Hartmann, Roland K ; Rossmanith, Walter</creatorcontrib><description>The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1004506</identifier><identifier>PMID: 25101763</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Arabidopsis ; Arabidopsis thaliana ; Biology and life sciences ; Catalysis ; Enzymes ; Evolution ; Evolution, Molecular ; Genetic aspects ; Genetic Drift ; Growth rate ; Physiological aspects ; Polypeptides ; Proteins ; Ribonuclease ; Ribonuclease P - genetics ; Ribonuclease P - metabolism ; Ribonucleoproteins - genetics ; Ribonucleoproteins - metabolism ; RNA Precursors - genetics ; RNA Precursors - metabolism ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae ; Transfer RNA</subject><ispartof>PLoS genetics, 2014-08, Vol.10 (8), p.e1004506-e1004506</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Weber et al 2014 Weber et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Weber C, Hartig A, Hartmann RK, Rossmanith W (2014) Playing RNase P Evolution: Swapping the RNA Catalyst for a Protein Reveals Functional Uniformity of Highly Divergent Enzyme Forms. PLoS Genet 10(8): e1004506. doi:10.1371/journal.pgen.1004506</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-ed64791cc68219bbee526e15848d066eca0a8af7d872b800cef704f42b84069e3</citedby><cites>FETCH-LOGICAL-c698t-ed64791cc68219bbee526e15848d066eca0a8af7d872b800cef704f42b84069e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125048/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125048/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25101763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Christoph</creatorcontrib><creatorcontrib>Hartig, Andreas</creatorcontrib><creatorcontrib>Hartmann, Roland K</creatorcontrib><creatorcontrib>Rossmanith, Walter</creatorcontrib><title>Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.</description><subject>Analysis</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Biology and life sciences</subject><subject>Catalysis</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Genetic aspects</subject><subject>Genetic Drift</subject><subject>Growth rate</subject><subject>Physiological aspects</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Ribonuclease</subject><subject>Ribonuclease P - genetics</subject><subject>Ribonuclease P - metabolism</subject><subject>Ribonucleoproteins - genetics</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Transfer RNA</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBYQkJw2MVO4sThgLSq-FipaqvycbUcZ5K4SuLUdhbCjX-Ow6bVRuIA8iHOzPO-mdgzQfCU4DWJUvLmWg-mE826r6BbE4xjipN7wTGhNFqlMY7vH-yPgkfWXmMcUZalD4OjkBJM0iQ6Dn5dNmJUXYWuzoUFdIlgp5vBKd29Rfa76Psp52rw-Q2SwolmtA6V2iCBeqMdqA4Z2IFoLCqHTk5K0aChU55plRuRLlGtqroZUaF2YHy1DkH3c2xhsmnt4-BB6dXwZH6eBF8_vP9y-ml1dvFxe7o5W8kkY24FRRKnGZEyYSHJ8hyAhgkQymJW4CQBKbBgokwLloY5w1hCmeK4jP1LjJMMopPg-d63b7Tl8-lZThJGccZoGHpiuycKLa55b1QrzMi1UPxPQJuKC-OUbIBHJAWS5oIQzGJgRY5LCoRQ6Z1kmaTe6938tSFvoZD-r41oFqbLTKdqXukdj0lIccy8wavZwOibAazjrbISmkZ0oAdfN6VhlEaUZB59sUcr4UtTXam9o5xwvolYmPnGoFNF679QfhXQKqk7KJWPLwSvFwLPOPjhKjFYy7efr_6DPf939uLbkn15wNa-zVxt5wa1SzDeg9Joaw2Ud0dNMJ_m5fbG-TQvfJ4XL3t2eE13otsBiX4DVpURYQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Weber, Christoph</creator><creator>Hartig, Andreas</creator><creator>Hartmann, Roland K</creator><creator>Rossmanith, Walter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140801</creationdate><title>Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms</title><author>Weber, Christoph ; Hartig, Andreas ; Hartmann, Roland K ; Rossmanith, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-ed64791cc68219bbee526e15848d066eca0a8af7d872b800cef704f42b84069e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Biology and life sciences</topic><topic>Catalysis</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Genetic aspects</topic><topic>Genetic Drift</topic><topic>Growth rate</topic><topic>Physiological aspects</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Ribonuclease</topic><topic>Ribonuclease P - genetics</topic><topic>Ribonuclease P - metabolism</topic><topic>Ribonucleoproteins - genetics</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Christoph</creatorcontrib><creatorcontrib>Hartig, Andreas</creatorcontrib><creatorcontrib>Hartmann, Roland K</creatorcontrib><creatorcontrib>Rossmanith, Walter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Christoph</au><au>Hartig, Andreas</au><au>Hartmann, Roland K</au><au>Rossmanith, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>e1004506</spage><epage>e1004506</epage><pages>e1004506-e1004506</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25101763</pmid><doi>10.1371/journal.pgen.1004506</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2014-08, Vol.10 (8), p.e1004506-e1004506 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1685098522 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; PMC (PubMed Central); DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Arabidopsis Arabidopsis thaliana Biology and life sciences Catalysis Enzymes Evolution Evolution, Molecular Genetic aspects Genetic Drift Growth rate Physiological aspects Polypeptides Proteins Ribonuclease Ribonuclease P - genetics Ribonuclease P - metabolism Ribonucleoproteins - genetics Ribonucleoproteins - metabolism RNA Precursors - genetics RNA Precursors - metabolism RNA, Transfer - genetics RNA, Transfer - metabolism Saccharomyces cerevisiae Transfer RNA |
title | Playing RNase P evolution: swapping the RNA catalyst for a protein reveals functional uniformity of highly divergent enzyme forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Playing%20RNase%20P%20evolution:%20swapping%20the%20RNA%20catalyst%20for%20a%20protein%20reveals%20functional%20uniformity%20of%20highly%20divergent%20enzyme%20forms&rft.jtitle=PLoS%20genetics&rft.au=Weber,%20Christoph&rft.date=2014-08-01&rft.volume=10&rft.issue=8&rft.spage=e1004506&rft.epage=e1004506&rft.pages=e1004506-e1004506&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1004506&rft_dat=%3Cgale_plos_%3EA382950657%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552373519&rft_id=info:pmid/25101763&rft_galeid=A382950657&rft_doaj_id=oai_doaj_org_article_317e17ba11084e8db0f5e115c985cf67&rfr_iscdi=true |