A Bayesian ensemble approach for epidemiological projections
Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We exp...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2015-04, Vol.11 (4), p.e1004187-e1004187 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004187 |
---|---|
container_issue | 4 |
container_start_page | e1004187 |
container_title | PLoS computational biology |
container_volume | 11 |
creator | Lindström, Tom Tildesley, Michael Webb, Colleen |
description | Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks. |
doi_str_mv | 10.1371/journal.pcbi.1004187 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685052116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418603808</galeid><doaj_id>oai_doaj_org_article_b1796a7e40054d4ca540b71ea805647b</doaj_id><sourcerecordid>A418603808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-7b59424c6fcd19d67958e8a4df912c482ca384e79046f0b93490dd0c54d2c5e43</originalsourceid><addsrcrecordid>eNqVkluL1DAYhoso7kH_gWjBG72YMWnOIMK4ngYWBU-3IU2_zmbINDVpV_ffm-7MLlvwRnKR8OV53-RL3qJ4gtESE4FfbcMYO-OXva3dEiNEsRT3imPMGFkIwuT9O-uj4iSlLUJ5qfjD4qhiqhJSVcfF61X51lxBcqYroUuwqz2Upu9jMPaibEMsoXcN7FzwYeOs8WXe2oIdXOjSo-JBa3yCx4f5tPjx4f33s0-L8y8f12er84XlAg8LUTNFK2p5axusGi4UkyANbVqFK0tlZQ2RFIRClLeoVoQq1DTIMtpUlgElp8WzvW_vQ9KHxpPGXDLEKox5JtZ7oglmq_vodiZe6WCcvi6EuNEmDs560DUWihsBFKF8ALWGUVQLDEYixqmos9di75V-Qz_WM7d37ufq2s27UWOsKj7d7s3hdmO9g8ZCN0TjZ7L5Tucu9CZcakoxE5xkgxcHgxh-jZAGvXPJgvemgzBOfQopqCAEZfT5Ht2Y3Irr2pAd7YTrVQ4AR0QimanlP6g8po-0oYPW5fpM8HImyMwAf4aNGVPS629f_4P9PGfpnrUxpBShvX0VjPSU4pvP1FOK9SHFWfb07oveim5iS_4CLQrsmg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678747330</pqid></control><display><type>article</type><title>A Bayesian ensemble approach for epidemiological projections</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Lindström, Tom ; Tildesley, Michael ; Webb, Colleen</creator><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Lindström, Tom ; Tildesley, Michael ; Webb, Colleen ; Kosakovsky Pond, Sergei L.</creatorcontrib><description>Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004187</identifier><identifier>PMID: 25927892</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Bayes Theorem ; Bayesian analysis ; Climate change ; Computer Simulation ; Confidentiality ; Data Interpretation, Statistical ; Disease Outbreaks - statistics & numerical data ; Emergency preparedness ; Environmental aspects ; Epidemics ; Epidemiology ; Foot & mouth disease ; Foot-and-Mouth Disease - epidemiology ; Health aspects ; Humans ; Immunization ; Incidence ; Mathematical models ; Models, Statistical ; Mortality ; Population Surveillance - methods ; Reproducibility of Results ; Risk Factors ; Sensitivity and Specificity ; United Kingdom - epidemiology</subject><ispartof>PLoS computational biology, 2015-04, Vol.11 (4), p.e1004187-e1004187</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Lindström et al 2015 Lindström et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lindström T, Tildesley M, Webb C (2015) A Bayesian Ensemble Approach for Epidemiological Projections. PLoS Comput Biol 11(4): e1004187. doi:10.1371/journal.pcbi.1004187</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-7b59424c6fcd19d67958e8a4df912c482ca384e79046f0b93490dd0c54d2c5e43</citedby><cites>FETCH-LOGICAL-c671t-7b59424c6fcd19d67958e8a4df912c482ca384e79046f0b93490dd0c54d2c5e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25927892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119264$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Kosakovsky Pond, Sergei L.</contributor><creatorcontrib>Lindström, Tom</creatorcontrib><creatorcontrib>Tildesley, Michael</creatorcontrib><creatorcontrib>Webb, Colleen</creatorcontrib><title>A Bayesian ensemble approach for epidemiological projections</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Climate change</subject><subject>Computer Simulation</subject><subject>Confidentiality</subject><subject>Data Interpretation, Statistical</subject><subject>Disease Outbreaks - statistics & numerical data</subject><subject>Emergency preparedness</subject><subject>Environmental aspects</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Foot & mouth disease</subject><subject>Foot-and-Mouth Disease - epidemiology</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immunization</subject><subject>Incidence</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>Population Surveillance - methods</subject><subject>Reproducibility of Results</subject><subject>Risk Factors</subject><subject>Sensitivity and Specificity</subject><subject>United Kingdom - epidemiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqVkluL1DAYhoso7kH_gWjBG72YMWnOIMK4ngYWBU-3IU2_zmbINDVpV_ffm-7MLlvwRnKR8OV53-RL3qJ4gtESE4FfbcMYO-OXva3dEiNEsRT3imPMGFkIwuT9O-uj4iSlLUJ5qfjD4qhiqhJSVcfF61X51lxBcqYroUuwqz2Upu9jMPaibEMsoXcN7FzwYeOs8WXe2oIdXOjSo-JBa3yCx4f5tPjx4f33s0-L8y8f12er84XlAg8LUTNFK2p5axusGi4UkyANbVqFK0tlZQ2RFIRClLeoVoQq1DTIMtpUlgElp8WzvW_vQ9KHxpPGXDLEKox5JtZ7oglmq_vodiZe6WCcvi6EuNEmDs560DUWihsBFKF8ALWGUVQLDEYixqmos9di75V-Qz_WM7d37ufq2s27UWOsKj7d7s3hdmO9g8ZCN0TjZ7L5Tucu9CZcakoxE5xkgxcHgxh-jZAGvXPJgvemgzBOfQopqCAEZfT5Ht2Y3Irr2pAd7YTrVQ4AR0QimanlP6g8po-0oYPW5fpM8HImyMwAf4aNGVPS629f_4P9PGfpnrUxpBShvX0VjPSU4pvP1FOK9SHFWfb07oveim5iS_4CLQrsmg</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Lindström, Tom</creator><creator>Tildesley, Michael</creator><creator>Webb, Colleen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20150401</creationdate><title>A Bayesian ensemble approach for epidemiological projections</title><author>Lindström, Tom ; Tildesley, Michael ; Webb, Colleen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-7b59424c6fcd19d67958e8a4df912c482ca384e79046f0b93490dd0c54d2c5e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Climate change</topic><topic>Computer Simulation</topic><topic>Confidentiality</topic><topic>Data Interpretation, Statistical</topic><topic>Disease Outbreaks - statistics & numerical data</topic><topic>Emergency preparedness</topic><topic>Environmental aspects</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Foot & mouth disease</topic><topic>Foot-and-Mouth Disease - epidemiology</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immunization</topic><topic>Incidence</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>Population Surveillance - methods</topic><topic>Reproducibility of Results</topic><topic>Risk Factors</topic><topic>Sensitivity and Specificity</topic><topic>United Kingdom - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindström, Tom</creatorcontrib><creatorcontrib>Tildesley, Michael</creatorcontrib><creatorcontrib>Webb, Colleen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindström, Tom</au><au>Tildesley, Michael</au><au>Webb, Colleen</au><au>Kosakovsky Pond, Sergei L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian ensemble approach for epidemiological projections</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>11</volume><issue>4</issue><spage>e1004187</spage><epage>e1004187</epage><pages>e1004187-e1004187</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25927892</pmid><doi>10.1371/journal.pcbi.1004187</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2015-04, Vol.11 (4), p.e1004187-e1004187 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1685052116 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Public Library of Science (PLoS); PubMed Central |
subjects | Algorithms Animals Bayes Theorem Bayesian analysis Climate change Computer Simulation Confidentiality Data Interpretation, Statistical Disease Outbreaks - statistics & numerical data Emergency preparedness Environmental aspects Epidemics Epidemiology Foot & mouth disease Foot-and-Mouth Disease - epidemiology Health aspects Humans Immunization Incidence Mathematical models Models, Statistical Mortality Population Surveillance - methods Reproducibility of Results Risk Factors Sensitivity and Specificity United Kingdom - epidemiology |
title | A Bayesian ensemble approach for epidemiological projections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20ensemble%20approach%20for%20epidemiological%20projections&rft.jtitle=PLoS%20computational%20biology&rft.au=Lindstr%C3%B6m,%20Tom&rft.date=2015-04-01&rft.volume=11&rft.issue=4&rft.spage=e1004187&rft.epage=e1004187&rft.pages=e1004187-e1004187&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004187&rft_dat=%3Cgale_plos_%3EA418603808%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1678747330&rft_id=info:pmid/25927892&rft_galeid=A418603808&rft_doaj_id=oai_doaj_org_article_b1796a7e40054d4ca540b71ea805647b&rfr_iscdi=true |