Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin

The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2015-03, Vol.11 (3), p.e1004123-e1004123
Hauptverfasser: Kalli, Antreas C, Sansom, Mark S P, Reithmeier, Reinhart A F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004123
container_issue 3
container_start_page e1004123
container_title PLoS computational biology
container_volume 11
creator Kalli, Antreas C
Sansom, Mark S P
Reithmeier, Reinhart A F
description The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a "proton trap" that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane.
doi_str_mv 10.1371/journal.pcbi.1004123
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1685043906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f0fb5a15b9394e109c4d424b4576be7e</doaj_id><sourcerecordid>1660659524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-57a93c9806ec67d1e59ec727d51ae6d35e967eae75d4fd173f5de3f5d6f34e5c3</originalsourceid><addsrcrecordid>eNpVUs1uEzEQXiEQLYU3QOAjEkqx13_xBamqgFYq4kLP1qw92zjyroO9myoPw7vikLRqL_Zo5vsZW1_TvGf0nHHNvqzTnEeI5xvXhXNGqWAtf9GcMin5QnO5fPmkPmnelLKmtJZGvW5OWqlbs5TmtPn7M0V0c4RM_G6EIbhCShhqYwppLCT1ZFoh6cBNmANEcpvhglx9XswZXIik7IZNynVGwkhi2ARPuhBhh7mQjFusDCAupoKelAkmJDD62ipYbaewxcqr7Cpf7ch9mFbEQfYh7bXGt82rHmLBd8f7rLn9_u335dXi5teP68uLm4UTZjktpAbDnVlShU5pz1AadLrVXjJA5blEozQCaulF75nmvfS4P1TPBUrHz5qPB91N3dQef7ZYppaSCm6oqojrA8InWNtNDgPknU0Q7P9GyncW8hRcRNvTvpPAZGe4EcioccKLVnRCatWhxqr19eg2dwN6h-OUIT4TfT4Zw8repa0VXKhW0yrw6SiQ058Zy2SHUBzGCCOmeb-3okoa2YoKFQeoy6mUjP2jDaN2n6OH19p9juwxR5X24emKj6SH4PB_kenLTQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660659524</pqid></control><display><type>article</type><title>Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Kalli, Antreas C ; Sansom, Mark S P ; Reithmeier, Reinhart A F</creator><contributor>de Groot, Bert L.</contributor><creatorcontrib>Kalli, Antreas C ; Sansom, Mark S P ; Reithmeier, Reinhart A F ; de Groot, Bert L.</creatorcontrib><description>The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a "proton trap" that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004123</identifier><identifier>PMID: 25729859</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Binding sites ; Cardiolipins - chemistry ; Cardiolipins - metabolism ; Crystal structure ; Cytochrome ; E coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - metabolism ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Proteins</subject><ispartof>PLoS computational biology, 2015-03, Vol.11 (3), p.e1004123-e1004123</ispartof><rights>2015 Kalli et al 2015 Kalli et al</rights><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: -Uracil Symporter in Lipid Bilayers Reveal a Closed State and a Selective Interaction with Cardiolipin. PLoS Comput Biol 11(3): e1004123. doi:10.1371/journal.pcbi.1004123</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-57a93c9806ec67d1e59ec727d51ae6d35e967eae75d4fd173f5de3f5d6f34e5c3</citedby><cites>FETCH-LOGICAL-c498t-57a93c9806ec67d1e59ec727d51ae6d35e967eae75d4fd173f5de3f5d6f34e5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346270/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346270/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25729859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>de Groot, Bert L.</contributor><creatorcontrib>Kalli, Antreas C</creatorcontrib><creatorcontrib>Sansom, Mark S P</creatorcontrib><creatorcontrib>Reithmeier, Reinhart A F</creatorcontrib><title>Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a "proton trap" that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane.</description><subject>Amino Acid Sequence</subject><subject>Binding sites</subject><subject>Cardiolipins - chemistry</subject><subject>Cardiolipins - metabolism</subject><subject>Crystal structure</subject><subject>Cytochrome</subject><subject>E coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Sequence Data</subject><subject>Proteins</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUs1uEzEQXiEQLYU3QOAjEkqx13_xBamqgFYq4kLP1qw92zjyroO9myoPw7vikLRqL_Zo5vsZW1_TvGf0nHHNvqzTnEeI5xvXhXNGqWAtf9GcMin5QnO5fPmkPmnelLKmtJZGvW5OWqlbs5TmtPn7M0V0c4RM_G6EIbhCShhqYwppLCT1ZFoh6cBNmANEcpvhglx9XswZXIik7IZNynVGwkhi2ARPuhBhh7mQjFusDCAupoKelAkmJDD62ipYbaewxcqr7Cpf7ch9mFbEQfYh7bXGt82rHmLBd8f7rLn9_u335dXi5teP68uLm4UTZjktpAbDnVlShU5pz1AadLrVXjJA5blEozQCaulF75nmvfS4P1TPBUrHz5qPB91N3dQef7ZYppaSCm6oqojrA8InWNtNDgPknU0Q7P9GyncW8hRcRNvTvpPAZGe4EcioccKLVnRCatWhxqr19eg2dwN6h-OUIT4TfT4Zw8repa0VXKhW0yrw6SiQ058Zy2SHUBzGCCOmeb-3okoa2YoKFQeoy6mUjP2jDaN2n6OH19p9juwxR5X24emKj6SH4PB_kenLTQ</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Kalli, Antreas C</creator><creator>Sansom, Mark S P</creator><creator>Reithmeier, Reinhart A F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150301</creationdate><title>Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin</title><author>Kalli, Antreas C ; Sansom, Mark S P ; Reithmeier, Reinhart A F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-57a93c9806ec67d1e59ec727d51ae6d35e967eae75d4fd173f5de3f5d6f34e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Binding sites</topic><topic>Cardiolipins - chemistry</topic><topic>Cardiolipins - metabolism</topic><topic>Crystal structure</topic><topic>Cytochrome</topic><topic>E coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Sequence Data</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalli, Antreas C</creatorcontrib><creatorcontrib>Sansom, Mark S P</creatorcontrib><creatorcontrib>Reithmeier, Reinhart A F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalli, Antreas C</au><au>Sansom, Mark S P</au><au>Reithmeier, Reinhart A F</au><au>de Groot, Bert L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>11</volume><issue>3</issue><spage>e1004123</spage><epage>e1004123</epage><pages>e1004123-e1004123</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a "proton trap" that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25729859</pmid><doi>10.1371/journal.pcbi.1004123</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2015-03, Vol.11 (3), p.e1004123-e1004123
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1685043906
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Amino Acid Sequence
Binding sites
Cardiolipins - chemistry
Cardiolipins - metabolism
Crystal structure
Cytochrome
E coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipids
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - metabolism
Molecular Dynamics Simulation
Molecular Sequence Data
Proteins
title Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulations%20of%20the%20bacterial%20UraA%20H+-uracil%20symporter%20in%20lipid%20bilayers%20reveal%20a%20closed%20state%20and%20a%20selective%20interaction%20with%20cardiolipin&rft.jtitle=PLoS%20computational%20biology&rft.au=Kalli,%20Antreas%20C&rft.date=2015-03-01&rft.volume=11&rft.issue=3&rft.spage=e1004123&rft.epage=e1004123&rft.pages=e1004123-e1004123&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004123&rft_dat=%3Cproquest_plos_%3E1660659524%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660659524&rft_id=info:pmid/25729859&rft_doaj_id=oai_doaj_org_article_f0fb5a15b9394e109c4d424b4576be7e&rfr_iscdi=true