Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling

Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2014-10, Vol.10 (10), p.e1003907-e1003907
Hauptverfasser: Lindgreen, Stinus, Umu, Sinan Uğur, Lai, Alicia Sook-Wei, Eldai, Hisham, Liu, Wenting, McGimpsey, Stephanie, Wheeler, Nicole E, Biggs, Patrick J, Thomson, Nick R, Barquist, Lars, Poole, Anthony M, Gardner, Paul P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003907
container_issue 10
container_start_page e1003907
container_title PLoS computational biology
container_volume 10
creator Lindgreen, Stinus
Umu, Sinan Uğur
Lai, Alicia Sook-Wei
Eldai, Hisham
Liu, Wenting
McGimpsey, Stephanie
Wheeler, Nicole E
Biggs, Patrick J
Thomson, Nick R
Barquist, Lars
Poole, Anthony M
Gardner, Paul P
description Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.
doi_str_mv 10.1371/journal.pcbi.1003907
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685031916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A389800609</galeid><doaj_id>oai_doaj_org_article_02bde787cb66465185af2fb45564a032</doaj_id><sourcerecordid>A389800609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-4153370736c34cc4e2c7817d20f9d04dedc9f2a438d8077ca9378eeb86e36c043</originalsourceid><addsrcrecordid>eNqVUk1vEzEUXCEQLYV_gGCP9JBgrz_3ghRVFCJVRQpwtrz-2Dry2lt7tyL_HoekVXNEPvjpeWY8b_Sq6j0ES4gY_LyNcwrSL0fVuSUEALWAvajOISFowRDhL5_VZ9WbnLcFQ3hLX1dnDUGENbg9r-wmdnOeaqdNmJx1Sk4uhjraOsSgonahrze3q9qmONRTkiGr5MYpDibXydzPLpVivNv52JtgpsL3frdwwcY0GF1nOYy-aLytXlnps3l3vC-q39dff119X9z8-La-Wt0sFAVkWmBIEGKAIaoQVgqbRjEOmW6AbTXA2mjV2kZixDUHjCnZIsaN6Tg1hQIwuqg-HnRHH7M4RpQFpJwABFtIC2J9QOgot2JMbpBpJ6J04l8jpl7IVObwRoCm04ZxpjpKMSWQE2kb22FCKJYANUXry_G3uSvTqhJhkv5E9PQluDvRxweBG1hUSBH4dBRI8X42eRKDy8p4L4OJ8943bIttRPa-lwdoL4u1fcBFUZWjzeBUDMa60l8h3nIAKGgL4fKEUDCT-TP1cs5ZrH9u_gN7e4rFB6xKMedk7NO8EIj9Zj7GLvabKY6bWWgfnmf1RHpcRfQX2Tfh6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619319356</pqid></control><display><type>article</type><title>Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lindgreen, Stinus ; Umu, Sinan Uğur ; Lai, Alicia Sook-Wei ; Eldai, Hisham ; Liu, Wenting ; McGimpsey, Stephanie ; Wheeler, Nicole E ; Biggs, Patrick J ; Thomson, Nick R ; Barquist, Lars ; Poole, Anthony M ; Gardner, Paul P</creator><contributor>Chen, Kevin</contributor><creatorcontrib>Lindgreen, Stinus ; Umu, Sinan Uğur ; Lai, Alicia Sook-Wei ; Eldai, Hisham ; Liu, Wenting ; McGimpsey, Stephanie ; Wheeler, Nicole E ; Biggs, Patrick J ; Thomson, Nick R ; Barquist, Lars ; Poole, Anthony M ; Gardner, Paul P ; Chen, Kevin</creatorcontrib><description>Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003907</identifier><identifier>PMID: 25357249</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Annotations ; Antisense RNA ; Archaea - genetics ; Bacteria ; Bacteria - genetics ; Bias ; Biology and Life Sciences ; Cluster Analysis ; Computational Biology ; Databases, Genetic ; Datasets ; Experiments ; Gene Expression Profiling - methods ; Genomes ; Genomics ; Noise ; Phylogenetics ; Phylogeny ; Proteins ; Quality control ; RNA sequencing ; RNA, Archaeal - chemistry ; RNA, Archaeal - classification ; RNA, Archaeal - genetics ; RNA, Bacterial - chemistry ; RNA, Bacterial - classification ; RNA, Bacterial - genetics ; RNA, Untranslated - chemistry ; RNA, Untranslated - classification ; RNA, Untranslated - genetics ; Studies ; Transcriptome - genetics</subject><ispartof>PLoS computational biology, 2014-10, Vol.10 (10), p.e1003907-e1003907</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Lindgreen et al 2014 Lindgreen et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lindgreen S, Umu SU, Lai AS-W, Eldai H, Liu W, McGimpsey S, et al. (2014) Robust Identification of Noncoding RNA from Transcriptomes Requires Phylogenetically-Informed Sampling. PLoS Comput Biol 10(10): e1003907. doi:10.1371/journal.pcbi.1003907</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-4153370736c34cc4e2c7817d20f9d04dedc9f2a438d8077ca9378eeb86e36c043</citedby><cites>FETCH-LOGICAL-c605t-4153370736c34cc4e2c7817d20f9d04dedc9f2a438d8077ca9378eeb86e36c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214555/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25357249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Kevin</contributor><creatorcontrib>Lindgreen, Stinus</creatorcontrib><creatorcontrib>Umu, Sinan Uğur</creatorcontrib><creatorcontrib>Lai, Alicia Sook-Wei</creatorcontrib><creatorcontrib>Eldai, Hisham</creatorcontrib><creatorcontrib>Liu, Wenting</creatorcontrib><creatorcontrib>McGimpsey, Stephanie</creatorcontrib><creatorcontrib>Wheeler, Nicole E</creatorcontrib><creatorcontrib>Biggs, Patrick J</creatorcontrib><creatorcontrib>Thomson, Nick R</creatorcontrib><creatorcontrib>Barquist, Lars</creatorcontrib><creatorcontrib>Poole, Anthony M</creatorcontrib><creatorcontrib>Gardner, Paul P</creatorcontrib><title>Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.</description><subject>Analysis</subject><subject>Annotations</subject><subject>Antisense RNA</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Cluster Analysis</subject><subject>Computational Biology</subject><subject>Databases, Genetic</subject><subject>Datasets</subject><subject>Experiments</subject><subject>Gene Expression Profiling - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Noise</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Quality control</subject><subject>RNA sequencing</subject><subject>RNA, Archaeal - chemistry</subject><subject>RNA, Archaeal - classification</subject><subject>RNA, Archaeal - genetics</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - classification</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Untranslated - chemistry</subject><subject>RNA, Untranslated - classification</subject><subject>RNA, Untranslated - genetics</subject><subject>Studies</subject><subject>Transcriptome - genetics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1vEzEUXCEQLYV_gGCP9JBgrz_3ghRVFCJVRQpwtrz-2Dry2lt7tyL_HoekVXNEPvjpeWY8b_Sq6j0ES4gY_LyNcwrSL0fVuSUEALWAvajOISFowRDhL5_VZ9WbnLcFQ3hLX1dnDUGENbg9r-wmdnOeaqdNmJx1Sk4uhjraOsSgonahrze3q9qmONRTkiGr5MYpDibXydzPLpVivNv52JtgpsL3frdwwcY0GF1nOYy-aLytXlnps3l3vC-q39dff119X9z8-La-Wt0sFAVkWmBIEGKAIaoQVgqbRjEOmW6AbTXA2mjV2kZixDUHjCnZIsaN6Tg1hQIwuqg-HnRHH7M4RpQFpJwABFtIC2J9QOgot2JMbpBpJ6J04l8jpl7IVObwRoCm04ZxpjpKMSWQE2kb22FCKJYANUXry_G3uSvTqhJhkv5E9PQluDvRxweBG1hUSBH4dBRI8X42eRKDy8p4L4OJ8943bIttRPa-lwdoL4u1fcBFUZWjzeBUDMa60l8h3nIAKGgL4fKEUDCT-TP1cs5ZrH9u_gN7e4rFB6xKMedk7NO8EIj9Zj7GLvabKY6bWWgfnmf1RHpcRfQX2Tfh6w</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Lindgreen, Stinus</creator><creator>Umu, Sinan Uğur</creator><creator>Lai, Alicia Sook-Wei</creator><creator>Eldai, Hisham</creator><creator>Liu, Wenting</creator><creator>McGimpsey, Stephanie</creator><creator>Wheeler, Nicole E</creator><creator>Biggs, Patrick J</creator><creator>Thomson, Nick R</creator><creator>Barquist, Lars</creator><creator>Poole, Anthony M</creator><creator>Gardner, Paul P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141001</creationdate><title>Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling</title><author>Lindgreen, Stinus ; Umu, Sinan Uğur ; Lai, Alicia Sook-Wei ; Eldai, Hisham ; Liu, Wenting ; McGimpsey, Stephanie ; Wheeler, Nicole E ; Biggs, Patrick J ; Thomson, Nick R ; Barquist, Lars ; Poole, Anthony M ; Gardner, Paul P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-4153370736c34cc4e2c7817d20f9d04dedc9f2a438d8077ca9378eeb86e36c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Annotations</topic><topic>Antisense RNA</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Cluster Analysis</topic><topic>Computational Biology</topic><topic>Databases, Genetic</topic><topic>Datasets</topic><topic>Experiments</topic><topic>Gene Expression Profiling - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Noise</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Quality control</topic><topic>RNA sequencing</topic><topic>RNA, Archaeal - chemistry</topic><topic>RNA, Archaeal - classification</topic><topic>RNA, Archaeal - genetics</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - classification</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Untranslated - chemistry</topic><topic>RNA, Untranslated - classification</topic><topic>RNA, Untranslated - genetics</topic><topic>Studies</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindgreen, Stinus</creatorcontrib><creatorcontrib>Umu, Sinan Uğur</creatorcontrib><creatorcontrib>Lai, Alicia Sook-Wei</creatorcontrib><creatorcontrib>Eldai, Hisham</creatorcontrib><creatorcontrib>Liu, Wenting</creatorcontrib><creatorcontrib>McGimpsey, Stephanie</creatorcontrib><creatorcontrib>Wheeler, Nicole E</creatorcontrib><creatorcontrib>Biggs, Patrick J</creatorcontrib><creatorcontrib>Thomson, Nick R</creatorcontrib><creatorcontrib>Barquist, Lars</creatorcontrib><creatorcontrib>Poole, Anthony M</creatorcontrib><creatorcontrib>Gardner, Paul P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindgreen, Stinus</au><au>Umu, Sinan Uğur</au><au>Lai, Alicia Sook-Wei</au><au>Eldai, Hisham</au><au>Liu, Wenting</au><au>McGimpsey, Stephanie</au><au>Wheeler, Nicole E</au><au>Biggs, Patrick J</au><au>Thomson, Nick R</au><au>Barquist, Lars</au><au>Poole, Anthony M</au><au>Gardner, Paul P</au><au>Chen, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>10</volume><issue>10</issue><spage>e1003907</spage><epage>e1003907</epage><pages>e1003907-e1003907</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25357249</pmid><doi>10.1371/journal.pcbi.1003907</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2014-10, Vol.10 (10), p.e1003907-e1003907
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1685031916
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Annotations
Antisense RNA
Archaea - genetics
Bacteria
Bacteria - genetics
Bias
Biology and Life Sciences
Cluster Analysis
Computational Biology
Databases, Genetic
Datasets
Experiments
Gene Expression Profiling - methods
Genomes
Genomics
Noise
Phylogenetics
Phylogeny
Proteins
Quality control
RNA sequencing
RNA, Archaeal - chemistry
RNA, Archaeal - classification
RNA, Archaeal - genetics
RNA, Bacterial - chemistry
RNA, Bacterial - classification
RNA, Bacterial - genetics
RNA, Untranslated - chemistry
RNA, Untranslated - classification
RNA, Untranslated - genetics
Studies
Transcriptome - genetics
title Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20identification%20of%20noncoding%20RNA%20from%20transcriptomes%20requires%20phylogenetically-informed%20sampling&rft.jtitle=PLoS%20computational%20biology&rft.au=Lindgreen,%20Stinus&rft.date=2014-10-01&rft.volume=10&rft.issue=10&rft.spage=e1003907&rft.epage=e1003907&rft.pages=e1003907-e1003907&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003907&rft_dat=%3Cgale_plos_%3EA389800609%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619319356&rft_id=info:pmid/25357249&rft_galeid=A389800609&rft_doaj_id=oai_doaj_org_article_02bde787cb66465185af2fb45564a032&rfr_iscdi=true