Chromatin loops as allosteric modulators of enhancer-promoter interactions

The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2014-10, Vol.10 (10), p.e1003867-e1003867
Hauptverfasser: Doyle, Boryana, Fudenberg, Geoffrey, Imakaev, Maxim, Mirny, Leonid A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003867
container_issue 10
container_start_page e1003867
container_title PLoS computational biology
container_volume 10
creator Doyle, Boryana
Fudenberg, Geoffrey
Imakaev, Maxim
Mirny, Leonid A
description The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.
doi_str_mv 10.1371/journal.pcbi.1003867
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685031882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A389800586</galeid><doaj_id>oai_doaj_org_article_8d1427eb59f74f52ac8f9ea6a2aaf2a3</doaj_id><sourcerecordid>A389800586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-4436071286ae2977d7b09f37e3195decc271b6e09709357680090311413b279f3</originalsourceid><addsrcrecordid>eNqVksmOEzEQhlsIxAwDb4Cgj3BI8NLeLkijiCVoBBLL2ap2uxNH3XawuxG8PRWSGU2OyKvs7_9dLlVVPadkSbmib3ZpzhGG5d61YUkJ4VqqB9UlFYIvFBf64b39RfWklB0yQhv5uLpggjdESXVZfVptcxphCrEeUtqXGrAPQyqTz8HVY-rmAaaUS5362sctROfzYo-ahEQdIs7gppBieVo96mEo_tlpvap-vH_3ffVxcfPlw3p1fbNwUtFp0TRcEkWZluCZUapTLTE9V55TIzrvHFO0lZ4YRQwXSmpCDOGUNpS3TCF5Vb08-u4xTHtKQ7FUaoGc1gyJ9ZHoEuzsPocR8h-bINh_BylvLOQpuMFb3dGGKd8K06umFwyc7o0HCQygZ8DR6-3ptbkdfed8nDIMZ6bnNzFs7Sb9sg0jqhEKDV6dDHL6Ofsy2TEU54cBok_zIW6qcTDTILo8ohvA0ELsEzo6bJ0fg0vR9wHPr7k2mBShJQpenwmQmfzvaQNzKXb97et_sJ_P2ebIupxKyb6_-y8l9lB9t2m3h-qzp-pD2Yv7uboT3ZYb_wuoptaQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1618161294</pqid></control><display><type>article</type><title>Chromatin loops as allosteric modulators of enhancer-promoter interactions</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Doyle, Boryana ; Fudenberg, Geoffrey ; Imakaev, Maxim ; Mirny, Leonid A</creator><contributor>Marti-Renom, Marc A.</contributor><creatorcontrib>Doyle, Boryana ; Fudenberg, Geoffrey ; Imakaev, Maxim ; Mirny, Leonid A ; Marti-Renom, Marc A.</creatorcontrib><description>The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003867</identifier><identifier>PMID: 25340767</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Chromatin ; Chromatin - chemistry ; Chromatin - metabolism ; Computational Biology ; Enhancer Elements, Genetic - physiology ; Gene expression ; Gene Expression Regulation - physiology ; Insects ; Models, Genetic ; Promoter Regions, Genetic - physiology ; Promoters (Genetics) ; Protein Conformation ; Simulation ; Studies</subject><ispartof>PLoS computational biology, 2014-10, Vol.10 (10), p.e1003867-e1003867</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Doyle et al 2014 Doyle et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Doyle B, Fudenberg G, Imakaev M, Mirny LA (2014) Chromatin Loops as Allosteric Modulators of Enhancer-Promoter Interactions. PLoS Comput Biol 10(10): e1003867. doi:10.1371/journal.pcbi.1003867</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-4436071286ae2977d7b09f37e3195decc271b6e09709357680090311413b279f3</citedby><cites>FETCH-LOGICAL-c671t-4436071286ae2977d7b09f37e3195decc271b6e09709357680090311413b279f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207457/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207457/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25340767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Marti-Renom, Marc A.</contributor><creatorcontrib>Doyle, Boryana</creatorcontrib><creatorcontrib>Fudenberg, Geoffrey</creatorcontrib><creatorcontrib>Imakaev, Maxim</creatorcontrib><creatorcontrib>Mirny, Leonid A</creatorcontrib><title>Chromatin loops as allosteric modulators of enhancer-promoter interactions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>Computational Biology</subject><subject>Enhancer Elements, Genetic - physiology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - physiology</subject><subject>Insects</subject><subject>Models, Genetic</subject><subject>Promoter Regions, Genetic - physiology</subject><subject>Promoters (Genetics)</subject><subject>Protein Conformation</subject><subject>Simulation</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVksmOEzEQhlsIxAwDb4Cgj3BI8NLeLkijiCVoBBLL2ap2uxNH3XawuxG8PRWSGU2OyKvs7_9dLlVVPadkSbmib3ZpzhGG5d61YUkJ4VqqB9UlFYIvFBf64b39RfWklB0yQhv5uLpggjdESXVZfVptcxphCrEeUtqXGrAPQyqTz8HVY-rmAaaUS5362sctROfzYo-ahEQdIs7gppBieVo96mEo_tlpvap-vH_3ffVxcfPlw3p1fbNwUtFp0TRcEkWZluCZUapTLTE9V55TIzrvHFO0lZ4YRQwXSmpCDOGUNpS3TCF5Vb08-u4xTHtKQ7FUaoGc1gyJ9ZHoEuzsPocR8h-bINh_BylvLOQpuMFb3dGGKd8K06umFwyc7o0HCQygZ8DR6-3ptbkdfed8nDIMZ6bnNzFs7Sb9sg0jqhEKDV6dDHL6Ofsy2TEU54cBok_zIW6qcTDTILo8ohvA0ELsEzo6bJ0fg0vR9wHPr7k2mBShJQpenwmQmfzvaQNzKXb97et_sJ_P2ebIupxKyb6_-y8l9lB9t2m3h-qzp-pD2Yv7uboT3ZYb_wuoptaQ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Doyle, Boryana</creator><creator>Fudenberg, Geoffrey</creator><creator>Imakaev, Maxim</creator><creator>Mirny, Leonid A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141001</creationdate><title>Chromatin loops as allosteric modulators of enhancer-promoter interactions</title><author>Doyle, Boryana ; Fudenberg, Geoffrey ; Imakaev, Maxim ; Mirny, Leonid A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-4436071286ae2977d7b09f37e3195decc271b6e09709357680090311413b279f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>Computational Biology</topic><topic>Enhancer Elements, Genetic - physiology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - physiology</topic><topic>Insects</topic><topic>Models, Genetic</topic><topic>Promoter Regions, Genetic - physiology</topic><topic>Promoters (Genetics)</topic><topic>Protein Conformation</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doyle, Boryana</creatorcontrib><creatorcontrib>Fudenberg, Geoffrey</creatorcontrib><creatorcontrib>Imakaev, Maxim</creatorcontrib><creatorcontrib>Mirny, Leonid A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doyle, Boryana</au><au>Fudenberg, Geoffrey</au><au>Imakaev, Maxim</au><au>Mirny, Leonid A</au><au>Marti-Renom, Marc A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatin loops as allosteric modulators of enhancer-promoter interactions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>10</volume><issue>10</issue><spage>e1003867</spage><epage>e1003867</epage><pages>e1003867-e1003867</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25340767</pmid><doi>10.1371/journal.pcbi.1003867</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2014-10, Vol.10 (10), p.e1003867-e1003867
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1685031882
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Biology and Life Sciences
Chromatin
Chromatin - chemistry
Chromatin - metabolism
Computational Biology
Enhancer Elements, Genetic - physiology
Gene expression
Gene Expression Regulation - physiology
Insects
Models, Genetic
Promoter Regions, Genetic - physiology
Promoters (Genetics)
Protein Conformation
Simulation
Studies
title Chromatin loops as allosteric modulators of enhancer-promoter interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatin%20loops%20as%20allosteric%20modulators%20of%20enhancer-promoter%20interactions&rft.jtitle=PLoS%20computational%20biology&rft.au=Doyle,%20Boryana&rft.date=2014-10-01&rft.volume=10&rft.issue=10&rft.spage=e1003867&rft.epage=e1003867&rft.pages=e1003867-e1003867&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003867&rft_dat=%3Cgale_plos_%3EA389800586%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1618161294&rft_id=info:pmid/25340767&rft_galeid=A389800586&rft_doaj_id=oai_doaj_org_article_8d1427eb59f74f52ac8f9ea6a2aaf2a3&rfr_iscdi=true