Reactive searching and infotaxis in odor source localization
Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2014-10, Vol.10 (10), p.e1003861-e1003861 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003861 |
---|---|
container_issue | 10 |
container_start_page | e1003861 |
container_title | PLoS computational biology |
container_volume | 10 |
creator | Voges, Nicole Chaffiol, Antoine Lucas, Philippe Martinez, Dominique |
description | Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching. |
doi_str_mv | 10.1371/journal.pcbi.1003861 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1685031635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A389800581</galeid><doaj_id>oai_doaj_org_article_646f3a17ca6a4ba3a4dfce752b5a6537</doaj_id><sourcerecordid>A389800581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c705t-92152d9df2b75b16010a19133954aafbf33a3216a808b15d62959e787ce103b53</originalsourceid><addsrcrecordid>eNqVkt9v0zAQxyMEYqPwHyDII3to8cXxLwkhVdNglSqQBjxbF8dpXaVxsZNq8NfjrtlYeUN-8On8uTt_7y7LXgOZARXwfuOH0GE725nKzYAQKjk8yc6BMToVlMmnj-yz7EWMm8Qwqfjz7KxglBIK4jz7cGPR9G5v82gxmLXrVjl2de66xvd462Kycl_7kMdUz9i89QZb9xt757uX2bMG22hfjfck-_Hp6vvl9XT59fPicr6cGkFYP1UFsKJWdVNUglXACRAEBZQqViI2VUMp0gI4SiIrYDUvFFNWSGEsEFoxOsneHvPuWh_1KDxq4JIlFZweiMWRqD1u9C64LYZf2qPTdw4fVhpD70xrNS95QxGEQY5lhRTLujFWsKJiyBkVKdfHsdpQbW1tbNcHbE-Snr50bq1Xfq_LAkClvk6yi2OC9T9h1_OlPvhIwakqpNpDYt-NxYL_OdjY662LxrYtdtYPB42pd0ykQSZ0dkRXmGTcDSigSae2W2d8ZxuX_HMqlSSESfj7jzEgMb297Vc4xKgX327-g_1yypZH1gQfY7DNg0gg-rCb9yPSh93U426msDeP-_oQdL-M9A9rMt6h</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1615257553</pqid></control><display><type>article</type><title>Reactive searching and infotaxis in odor source localization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Voges, Nicole ; Chaffiol, Antoine ; Lucas, Philippe ; Martinez, Dominique</creator><contributor>Ayers, Joseph</contributor><creatorcontrib>Voges, Nicole ; Chaffiol, Antoine ; Lucas, Philippe ; Martinez, Dominique ; Ayers, Joseph</creatorcontrib><description>Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003861</identifier><identifier>PMID: 25330317</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animals ; Appetitive Behavior ; Artificial Intelligence ; Behavior ; Biology and Life Sciences ; Butterflies & moths ; Computational Biology ; Computer and Information Sciences ; Computer Science ; Confidence intervals ; Cybernetics ; Efficiency ; Experiments ; Female ; Females ; Flight, Animal ; Life Sciences ; Male ; Memory ; Models, Biological ; Moths ; Neural and Evolutionary Computing ; Odorants - analysis ; Pheromones ; Physiological aspects ; Robotics ; Success</subject><ispartof>PLoS computational biology, 2014-10, Vol.10 (10), p.e1003861-e1003861</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2014 Voges et al 2014 Voges et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Voges N, Chaffiol A, Lucas P, Martinez D (2014) Reactive Searching and Infotaxis in Odor Source Localization. PLoS Comput Biol 10(10): e1003861. doi:10.1371/journal.pcbi.1003861</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c705t-92152d9df2b75b16010a19133954aafbf33a3216a808b15d62959e787ce103b53</citedby><cites>FETCH-LOGICAL-c705t-92152d9df2b75b16010a19133954aafbf33a3216a808b15d62959e787ce103b53</cites><orcidid>0000-0002-6324-2600 ; 0000-0002-6557-6217 ; 0000-0003-2166-8248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211930/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211930/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25330317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02639289$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Ayers, Joseph</contributor><creatorcontrib>Voges, Nicole</creatorcontrib><creatorcontrib>Chaffiol, Antoine</creatorcontrib><creatorcontrib>Lucas, Philippe</creatorcontrib><creatorcontrib>Martinez, Dominique</creatorcontrib><title>Reactive searching and infotaxis in odor source localization</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Appetitive Behavior</subject><subject>Artificial Intelligence</subject><subject>Behavior</subject><subject>Biology and Life Sciences</subject><subject>Butterflies & moths</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer Science</subject><subject>Confidence intervals</subject><subject>Cybernetics</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Female</subject><subject>Females</subject><subject>Flight, Animal</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Memory</subject><subject>Models, Biological</subject><subject>Moths</subject><subject>Neural and Evolutionary Computing</subject><subject>Odorants - analysis</subject><subject>Pheromones</subject><subject>Physiological aspects</subject><subject>Robotics</subject><subject>Success</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkt9v0zAQxyMEYqPwHyDII3to8cXxLwkhVdNglSqQBjxbF8dpXaVxsZNq8NfjrtlYeUN-8On8uTt_7y7LXgOZARXwfuOH0GE725nKzYAQKjk8yc6BMToVlMmnj-yz7EWMm8Qwqfjz7KxglBIK4jz7cGPR9G5v82gxmLXrVjl2de66xvd462Kycl_7kMdUz9i89QZb9xt757uX2bMG22hfjfck-_Hp6vvl9XT59fPicr6cGkFYP1UFsKJWdVNUglXACRAEBZQqViI2VUMp0gI4SiIrYDUvFFNWSGEsEFoxOsneHvPuWh_1KDxq4JIlFZweiMWRqD1u9C64LYZf2qPTdw4fVhpD70xrNS95QxGEQY5lhRTLujFWsKJiyBkVKdfHsdpQbW1tbNcHbE-Snr50bq1Xfq_LAkClvk6yi2OC9T9h1_OlPvhIwakqpNpDYt-NxYL_OdjY662LxrYtdtYPB42pd0ykQSZ0dkRXmGTcDSigSae2W2d8ZxuX_HMqlSSESfj7jzEgMb297Vc4xKgX327-g_1yypZH1gQfY7DNg0gg-rCb9yPSh93U426msDeP-_oQdL-M9A9rMt6h</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Voges, Nicole</creator><creator>Chaffiol, Antoine</creator><creator>Lucas, Philippe</creator><creator>Martinez, Dominique</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6324-2600</orcidid><orcidid>https://orcid.org/0000-0002-6557-6217</orcidid><orcidid>https://orcid.org/0000-0003-2166-8248</orcidid></search><sort><creationdate>20141001</creationdate><title>Reactive searching and infotaxis in odor source localization</title><author>Voges, Nicole ; Chaffiol, Antoine ; Lucas, Philippe ; Martinez, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c705t-92152d9df2b75b16010a19133954aafbf33a3216a808b15d62959e787ce103b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Appetitive Behavior</topic><topic>Artificial Intelligence</topic><topic>Behavior</topic><topic>Biology and Life Sciences</topic><topic>Butterflies & moths</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer Science</topic><topic>Confidence intervals</topic><topic>Cybernetics</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Female</topic><topic>Females</topic><topic>Flight, Animal</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Memory</topic><topic>Models, Biological</topic><topic>Moths</topic><topic>Neural and Evolutionary Computing</topic><topic>Odorants - analysis</topic><topic>Pheromones</topic><topic>Physiological aspects</topic><topic>Robotics</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voges, Nicole</creatorcontrib><creatorcontrib>Chaffiol, Antoine</creatorcontrib><creatorcontrib>Lucas, Philippe</creatorcontrib><creatorcontrib>Martinez, Dominique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voges, Nicole</au><au>Chaffiol, Antoine</au><au>Lucas, Philippe</au><au>Martinez, Dominique</au><au>Ayers, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive searching and infotaxis in odor source localization</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>10</volume><issue>10</issue><spage>e1003861</spage><epage>e1003861</epage><pages>e1003861-e1003861</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25330317</pmid><doi>10.1371/journal.pcbi.1003861</doi><orcidid>https://orcid.org/0000-0002-6324-2600</orcidid><orcidid>https://orcid.org/0000-0002-6557-6217</orcidid><orcidid>https://orcid.org/0000-0003-2166-8248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2014-10, Vol.10 (10), p.e1003861-e1003861 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1685031635 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Analysis Animals Appetitive Behavior Artificial Intelligence Behavior Biology and Life Sciences Butterflies & moths Computational Biology Computer and Information Sciences Computer Science Confidence intervals Cybernetics Efficiency Experiments Female Females Flight, Animal Life Sciences Male Memory Models, Biological Moths Neural and Evolutionary Computing Odorants - analysis Pheromones Physiological aspects Robotics Success |
title | Reactive searching and infotaxis in odor source localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20searching%20and%20infotaxis%20in%20odor%20source%20localization&rft.jtitle=PLoS%20computational%20biology&rft.au=Voges,%20Nicole&rft.date=2014-10-01&rft.volume=10&rft.issue=10&rft.spage=e1003861&rft.epage=e1003861&rft.pages=e1003861-e1003861&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003861&rft_dat=%3Cgale_plos_%3EA389800581%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1615257553&rft_id=info:pmid/25330317&rft_galeid=A389800581&rft_doaj_id=oai_doaj_org_article_646f3a17ca6a4ba3a4dfce752b5a6537&rfr_iscdi=true |