Defining the estimated core genome of bacterial populations using a Bayesian decision model
The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing da...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2014-08, Vol.10 (8), p.e1003788-e1003788 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003788 |
---|---|
container_issue | 8 |
container_start_page | e1003788 |
container_title | PLoS computational biology |
container_volume | 10 |
creator | van Tonder, Andries J Mistry, Shilan Bray, James E Hill, Dorothea M C Cody, Alison J Farmer, Chris L Klugman, Keith P von Gottberg, Anne Bentley, Stephen D Parkhill, Julian Jolley, Keith A Maiden, Martin C J Brueggemann, Angela B |
description | The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance. |
doi_str_mv | 10.1371/journal.pcbi.1003788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1685029466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ecab11f7b0a24086a7f07fcad8d07f2e</doaj_id><sourcerecordid>1555620388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-242f056b574584a27f2a8033406051bdf813341ea6e5ebfe7dd77215408cacef3</originalsourceid><addsrcrecordid>eNpVUstu1DAUjRCIlsIfIPCSzQx2_JwNEpRXpUpsYMXCurGvpx4lcbATpP49Hiat2tW1fc859-HTNK8Z3TKu2ftDWvII_XZyXdwySrk25klzzqTkG82lefrgfNa8KOVQMdLs1PPmrJVMCMXUefP7M4Y4xnFP5hskWOY4wIyeuJSR7HFMA5IUSAduxhyhJ1Oalh7mmMZClnIkAvkEt1gijMSji6WmyJA89i-bZwH6gq_WeNH8-vrl5-X3zfWPb1eXH683TuzMvGlFG6hUndRCGgGtDi0YyrmgikrW-WBYvTAEhRK7gNp7rVsmBTUOHAZ-0bw96U59KnbdS7FMGUnbnVCqIq5OCJ_gYKdch8y3NkG0_x9S3lvIc3Q9WnTQMRZ0R6GtFRToQHVw4I2vscWq9WGttnQDeofjnKF_JPo4M8Ybu09_rWB1Is6rwLtVIKc_S125HWJx2PcwYlpq31JK1VJuTIWKE9TlVErGcF-GUXt0wd209ugCu7qg0t48bPGedPft_B-SL7IU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555620388</pqid></control><display><type>article</type><title>Defining the estimated core genome of bacterial populations using a Bayesian decision model</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>van Tonder, Andries J ; Mistry, Shilan ; Bray, James E ; Hill, Dorothea M C ; Cody, Alison J ; Farmer, Chris L ; Klugman, Keith P ; von Gottberg, Anne ; Bentley, Stephen D ; Parkhill, Julian ; Jolley, Keith A ; Maiden, Martin C J ; Brueggemann, Angela B</creator><creatorcontrib>van Tonder, Andries J ; Mistry, Shilan ; Bray, James E ; Hill, Dorothea M C ; Cody, Alison J ; Farmer, Chris L ; Klugman, Keith P ; von Gottberg, Anne ; Bentley, Stephen D ; Parkhill, Julian ; Jolley, Keith A ; Maiden, Martin C J ; Brueggemann, Angela B</creatorcontrib><description>The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003788</identifier><identifier>PMID: 25144616</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacterial Proteins - genetics ; Bayes Theorem ; Biology and Life Sciences ; Campylobacter jejuni - genetics ; Databases, Genetic ; Datasets ; Genes ; Genetic diversity ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Medicine and Health Sciences ; Methods ; Models, Genetic ; Neisseria meningitidis - genetics ; Population ; Public health ; Streptococcus infections ; Studies</subject><ispartof>PLoS computational biology, 2014-08, Vol.10 (8), p.e1003788-e1003788</ispartof><rights>2014 van Tonder et al 2014 van Tonder et al</rights><rights>2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: van Tonder AJ, Mistry S, Bray JE, Hill DMC, Cody AJ, Farmer CL, et al. (2014) Defining the Estimated Core Genome of Bacterial Populations Using a Bayesian Decision Model. PLoS Comput Biol 10(8): e1003788. doi:10.1371/journal.pcbi.1003788</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-242f056b574584a27f2a8033406051bdf813341ea6e5ebfe7dd77215408cacef3</citedby><cites>FETCH-LOGICAL-c498t-242f056b574584a27f2a8033406051bdf813341ea6e5ebfe7dd77215408cacef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140633/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140633/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25144616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Tonder, Andries J</creatorcontrib><creatorcontrib>Mistry, Shilan</creatorcontrib><creatorcontrib>Bray, James E</creatorcontrib><creatorcontrib>Hill, Dorothea M C</creatorcontrib><creatorcontrib>Cody, Alison J</creatorcontrib><creatorcontrib>Farmer, Chris L</creatorcontrib><creatorcontrib>Klugman, Keith P</creatorcontrib><creatorcontrib>von Gottberg, Anne</creatorcontrib><creatorcontrib>Bentley, Stephen D</creatorcontrib><creatorcontrib>Parkhill, Julian</creatorcontrib><creatorcontrib>Jolley, Keith A</creatorcontrib><creatorcontrib>Maiden, Martin C J</creatorcontrib><creatorcontrib>Brueggemann, Angela B</creatorcontrib><title>Defining the estimated core genome of bacterial populations using a Bayesian decision model</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance.</description><subject>Bacterial Proteins - genetics</subject><subject>Bayes Theorem</subject><subject>Biology and Life Sciences</subject><subject>Campylobacter jejuni - genetics</subject><subject>Databases, Genetic</subject><subject>Datasets</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Neisseria meningitidis - genetics</subject><subject>Population</subject><subject>Public health</subject><subject>Streptococcus infections</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUstu1DAUjRCIlsIfIPCSzQx2_JwNEpRXpUpsYMXCurGvpx4lcbATpP49Hiat2tW1fc859-HTNK8Z3TKu2ftDWvII_XZyXdwySrk25klzzqTkG82lefrgfNa8KOVQMdLs1PPmrJVMCMXUefP7M4Y4xnFP5hskWOY4wIyeuJSR7HFMA5IUSAduxhyhJ1Oalh7mmMZClnIkAvkEt1gijMSji6WmyJA89i-bZwH6gq_WeNH8-vrl5-X3zfWPb1eXH683TuzMvGlFG6hUndRCGgGtDi0YyrmgikrW-WBYvTAEhRK7gNp7rVsmBTUOHAZ-0bw96U59KnbdS7FMGUnbnVCqIq5OCJ_gYKdch8y3NkG0_x9S3lvIc3Q9WnTQMRZ0R6GtFRToQHVw4I2vscWq9WGttnQDeofjnKF_JPo4M8Ybu09_rWB1Is6rwLtVIKc_S125HWJx2PcwYlpq31JK1VJuTIWKE9TlVErGcF-GUXt0wd209ugCu7qg0t48bPGedPft_B-SL7IU</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>van Tonder, Andries J</creator><creator>Mistry, Shilan</creator><creator>Bray, James E</creator><creator>Hill, Dorothea M C</creator><creator>Cody, Alison J</creator><creator>Farmer, Chris L</creator><creator>Klugman, Keith P</creator><creator>von Gottberg, Anne</creator><creator>Bentley, Stephen D</creator><creator>Parkhill, Julian</creator><creator>Jolley, Keith A</creator><creator>Maiden, Martin C J</creator><creator>Brueggemann, Angela B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140801</creationdate><title>Defining the estimated core genome of bacterial populations using a Bayesian decision model</title><author>van Tonder, Andries J ; Mistry, Shilan ; Bray, James E ; Hill, Dorothea M C ; Cody, Alison J ; Farmer, Chris L ; Klugman, Keith P ; von Gottberg, Anne ; Bentley, Stephen D ; Parkhill, Julian ; Jolley, Keith A ; Maiden, Martin C J ; Brueggemann, Angela B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-242f056b574584a27f2a8033406051bdf813341ea6e5ebfe7dd77215408cacef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bayes Theorem</topic><topic>Biology and Life Sciences</topic><topic>Campylobacter jejuni - genetics</topic><topic>Databases, Genetic</topic><topic>Datasets</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Neisseria meningitidis - genetics</topic><topic>Population</topic><topic>Public health</topic><topic>Streptococcus infections</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Tonder, Andries J</creatorcontrib><creatorcontrib>Mistry, Shilan</creatorcontrib><creatorcontrib>Bray, James E</creatorcontrib><creatorcontrib>Hill, Dorothea M C</creatorcontrib><creatorcontrib>Cody, Alison J</creatorcontrib><creatorcontrib>Farmer, Chris L</creatorcontrib><creatorcontrib>Klugman, Keith P</creatorcontrib><creatorcontrib>von Gottberg, Anne</creatorcontrib><creatorcontrib>Bentley, Stephen D</creatorcontrib><creatorcontrib>Parkhill, Julian</creatorcontrib><creatorcontrib>Jolley, Keith A</creatorcontrib><creatorcontrib>Maiden, Martin C J</creatorcontrib><creatorcontrib>Brueggemann, Angela B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Tonder, Andries J</au><au>Mistry, Shilan</au><au>Bray, James E</au><au>Hill, Dorothea M C</au><au>Cody, Alison J</au><au>Farmer, Chris L</au><au>Klugman, Keith P</au><au>von Gottberg, Anne</au><au>Bentley, Stephen D</au><au>Parkhill, Julian</au><au>Jolley, Keith A</au><au>Maiden, Martin C J</au><au>Brueggemann, Angela B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the estimated core genome of bacterial populations using a Bayesian decision model</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>e1003788</spage><epage>e1003788</epage><pages>e1003788-e1003788</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25144616</pmid><doi>10.1371/journal.pcbi.1003788</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2014-08, Vol.10 (8), p.e1003788-e1003788 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1685029466 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Bacterial Proteins - genetics Bayes Theorem Biology and Life Sciences Campylobacter jejuni - genetics Databases, Genetic Datasets Genes Genetic diversity Genome, Bacterial - genetics Genomes Genomics Medicine and Health Sciences Methods Models, Genetic Neisseria meningitidis - genetics Population Public health Streptococcus infections Studies |
title | Defining the estimated core genome of bacterial populations using a Bayesian decision model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20estimated%20core%20genome%20of%20bacterial%20populations%20using%20a%20Bayesian%20decision%20model&rft.jtitle=PLoS%20computational%20biology&rft.au=van%20Tonder,%20Andries%20J&rft.date=2014-08-01&rft.volume=10&rft.issue=8&rft.spage=e1003788&rft.epage=e1003788&rft.pages=e1003788-e1003788&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003788&rft_dat=%3Cproquest_plos_%3E1555620388%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555620388&rft_id=info:pmid/25144616&rft_doaj_id=oai_doaj_org_article_ecab11f7b0a24086a7f07fcad8d07f2e&rfr_iscdi=true |