Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs

The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-05, Vol.10 (5), p.e0125021
Hauptverfasser: Uitdehaag, Joost C. M., de Roos, Jeroen A. D. M., van Doornmalen, Antoon M., Prinsen, Martine B. W., Spijkers-Hagelstein, Jill A. P., de Vetter, Judith R. F., de Man, Jos, Buijsman, Rogier C., Zaman, Guido J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e0125021
container_title PloS one
container_volume 10
creator Uitdehaag, Joost C. M.
de Roos, Jeroen A. D. M.
van Doornmalen, Antoon M.
Prinsen, Martine B. W.
Spijkers-Hagelstein, Jill A. P.
de Vetter, Judith R. F.
de Man, Jos
Buijsman, Rogier C.
Zaman, Guido J. R.
description The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.
doi_str_mv 10.1371/journal.pone.0125021
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1683578284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3697254081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3191-7a828940417b5d3e3a9000ce87e4d7eb2b91ae8f08fb370a661d5a5a1d855ed63</originalsourceid><addsrcrecordid>eNp1kUlPwzAQhS0EomX5B0hY4kqK9zgXJAir2CQoB06Wk0zaVGlc7JTl39NCQHDgNCPN996T5iG0Q8mA8pgeTNzcN7YezFwDA0KZJIyuoD5NOIsUI3z1195DGyFMCJFcK7WOekwRqiUTfWQfoIa8rV4AD60fQVs1I-xKnA5vb49ptI-v7o8eIuw8vnlKoxO_ABucQl3jc-9e2zHO3nHqplnV2LZyTVhqT9-q8Olz4uejsIXWSlsH2O7mJno8Ox2mF9H13fllenQd5ZwmNIqtZjoRRNA4kwUHbhNCSA46BlHEkLEsoRZ0SXSZ8ZhYpWghrbS00FJCofgm2v3yndUumO47wVCluYwX3mJBHHbEPJtCkUPTelubma-m1r8bZyvz99JUYzNyL0YIoViyjNjrDLx7nkNo_4kRX1TuXQgeyp8ESsyyum-VWVZnuur4B9tpjEE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683578284</pqid></control><display><type>article</type><title>Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Uitdehaag, Joost C. M. ; de Roos, Jeroen A. D. M. ; van Doornmalen, Antoon M. ; Prinsen, Martine B. W. ; Spijkers-Hagelstein, Jill A. P. ; de Vetter, Judith R. F. ; de Man, Jos ; Buijsman, Rogier C. ; Zaman, Guido J. R.</creator><contributor>Haass, Nikolas K.</contributor><creatorcontrib>Uitdehaag, Joost C. M. ; de Roos, Jeroen A. D. M. ; van Doornmalen, Antoon M. ; Prinsen, Martine B. W. ; Spijkers-Hagelstein, Jill A. P. ; de Vetter, Judith R. F. ; de Man, Jos ; Buijsman, Rogier C. ; Zaman, Guido J. R. ; Haass, Nikolas K.</creatorcontrib><description>The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0125021</identifier><identifier>PMID: 26018524</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Aurora kinase ; Biotechnology ; Breast cancer ; Cancer ; Cancer therapies ; Cell cycle ; Cell growth ; Cell proliferation ; Colorectal cancer ; CTNNB1 gene ; Cytotoxicity ; Drug resistance ; Drugs ; Enzyme inhibitors ; Epidermal growth factor receptors ; ErbB-2 protein ; Fibroblasts ; Gene expression ; Genes ; Inhibitors ; K-Ras protein ; Kinases ; Medical prognosis ; Melanoma ; Metastasis ; Mutation ; Myc protein ; Prostate ; Wnt protein ; Workflow ; β-Catenin</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0125021</ispartof><rights>2015 Uitdehaag et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Uitdehaag et al 2015 Uitdehaag et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3191-7a828940417b5d3e3a9000ce87e4d7eb2b91ae8f08fb370a661d5a5a1d855ed63</citedby><cites>FETCH-LOGICAL-c3191-7a828940417b5d3e3a9000ce87e4d7eb2b91ae8f08fb370a661d5a5a1d855ed63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446296/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446296/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2928,23866,27924,27925,53791,53793</link.rule.ids></links><search><contributor>Haass, Nikolas K.</contributor><creatorcontrib>Uitdehaag, Joost C. M.</creatorcontrib><creatorcontrib>de Roos, Jeroen A. D. M.</creatorcontrib><creatorcontrib>van Doornmalen, Antoon M.</creatorcontrib><creatorcontrib>Prinsen, Martine B. W.</creatorcontrib><creatorcontrib>Spijkers-Hagelstein, Jill A. P.</creatorcontrib><creatorcontrib>de Vetter, Judith R. F.</creatorcontrib><creatorcontrib>de Man, Jos</creatorcontrib><creatorcontrib>Buijsman, Rogier C.</creatorcontrib><creatorcontrib>Zaman, Guido J. R.</creatorcontrib><title>Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs</title><title>PloS one</title><description>The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.</description><subject>Aurora kinase</subject><subject>Biotechnology</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Colorectal cancer</subject><subject>CTNNB1 gene</subject><subject>Cytotoxicity</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>Enzyme inhibitors</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB-2 protein</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Inhibitors</subject><subject>K-Ras protein</subject><subject>Kinases</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Metastasis</subject><subject>Mutation</subject><subject>Myc protein</subject><subject>Prostate</subject><subject>Wnt protein</subject><subject>Workflow</subject><subject>β-Catenin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUlPwzAQhS0EomX5B0hY4kqK9zgXJAir2CQoB06Wk0zaVGlc7JTl39NCQHDgNCPN996T5iG0Q8mA8pgeTNzcN7YezFwDA0KZJIyuoD5NOIsUI3z1195DGyFMCJFcK7WOekwRqiUTfWQfoIa8rV4AD60fQVs1I-xKnA5vb49ptI-v7o8eIuw8vnlKoxO_ABucQl3jc-9e2zHO3nHqplnV2LZyTVhqT9-q8Olz4uejsIXWSlsH2O7mJno8Ox2mF9H13fllenQd5ZwmNIqtZjoRRNA4kwUHbhNCSA46BlHEkLEsoRZ0SXSZ8ZhYpWghrbS00FJCofgm2v3yndUumO47wVCluYwX3mJBHHbEPJtCkUPTelubma-m1r8bZyvz99JUYzNyL0YIoViyjNjrDLx7nkNo_4kRX1TuXQgeyp8ESsyyum-VWVZnuur4B9tpjEE</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Uitdehaag, Joost C. M.</creator><creator>de Roos, Jeroen A. D. M.</creator><creator>van Doornmalen, Antoon M.</creator><creator>Prinsen, Martine B. W.</creator><creator>Spijkers-Hagelstein, Jill A. P.</creator><creator>de Vetter, Judith R. F.</creator><creator>de Man, Jos</creator><creator>Buijsman, Rogier C.</creator><creator>Zaman, Guido J. R.</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs</title><author>Uitdehaag, Joost C. M. ; de Roos, Jeroen A. D. M. ; van Doornmalen, Antoon M. ; Prinsen, Martine B. W. ; Spijkers-Hagelstein, Jill A. P. ; de Vetter, Judith R. F. ; de Man, Jos ; Buijsman, Rogier C. ; Zaman, Guido J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3191-7a828940417b5d3e3a9000ce87e4d7eb2b91ae8f08fb370a661d5a5a1d855ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aurora kinase</topic><topic>Biotechnology</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Colorectal cancer</topic><topic>CTNNB1 gene</topic><topic>Cytotoxicity</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>Enzyme inhibitors</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB-2 protein</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Inhibitors</topic><topic>K-Ras protein</topic><topic>Kinases</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Metastasis</topic><topic>Mutation</topic><topic>Myc protein</topic><topic>Prostate</topic><topic>Wnt protein</topic><topic>Workflow</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uitdehaag, Joost C. M.</creatorcontrib><creatorcontrib>de Roos, Jeroen A. D. M.</creatorcontrib><creatorcontrib>van Doornmalen, Antoon M.</creatorcontrib><creatorcontrib>Prinsen, Martine B. W.</creatorcontrib><creatorcontrib>Spijkers-Hagelstein, Jill A. P.</creatorcontrib><creatorcontrib>de Vetter, Judith R. F.</creatorcontrib><creatorcontrib>de Man, Jos</creatorcontrib><creatorcontrib>Buijsman, Rogier C.</creatorcontrib><creatorcontrib>Zaman, Guido J. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uitdehaag, Joost C. M.</au><au>de Roos, Jeroen A. D. M.</au><au>van Doornmalen, Antoon M.</au><au>Prinsen, Martine B. W.</au><au>Spijkers-Hagelstein, Jill A. P.</au><au>de Vetter, Judith R. F.</au><au>de Man, Jos</au><au>Buijsman, Rogier C.</au><au>Zaman, Guido J. R.</au><au>Haass, Nikolas K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs</atitle><jtitle>PloS one</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0125021</spage><pages>e0125021-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>26018524</pmid><doi>10.1371/journal.pone.0125021</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-05, Vol.10 (5), p.e0125021
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1683578284
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aurora kinase
Biotechnology
Breast cancer
Cancer
Cancer therapies
Cell cycle
Cell growth
Cell proliferation
Colorectal cancer
CTNNB1 gene
Cytotoxicity
Drug resistance
Drugs
Enzyme inhibitors
Epidermal growth factor receptors
ErbB-2 protein
Fibroblasts
Gene expression
Genes
Inhibitors
K-Ras protein
Kinases
Medical prognosis
Melanoma
Metastasis
Mutation
Myc protein
Prostate
Wnt protein
Workflow
β-Catenin
title Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Targeting%20of%20CTNNB1-,%20KRAS-%20or%20MYC-Driven%20Cell%20Growth%20by%20Combinations%20of%20Existing%20Drugs&rft.jtitle=PloS%20one&rft.au=Uitdehaag,%20Joost%20C.%20M.&rft.date=2015-05-01&rft.volume=10&rft.issue=5&rft.spage=e0125021&rft.pages=e0125021-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0125021&rft_dat=%3Cproquest_plos_%3E3697254081%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683578284&rft_id=info:pmid/26018524&rfr_iscdi=true