Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster

Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-05, Vol.10 (5), p.e0126986
Hauptverfasser: Appel, Mirjam, Scholz, Claus-Jürgen, Müller, Tobias, Dittrich, Marcus, König, Christian, Bockstaller, Marie, Oguz, Tuba, Khalili, Afshin, Antwi-Adjei, Emmanuel, Schauer, Tamas, Margulies, Carla, Tanimoto, Hiromu, Yarali, Ayse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e0126986
container_title PloS one
container_volume 10
creator Appel, Mirjam
Scholz, Claus-Jürgen
Müller, Tobias
Dittrich, Marcus
König, Christian
Bockstaller, Marie
Oguz, Tuba
Khalili, Afshin
Antwi-Adjei, Emmanuel
Schauer, Tamas
Margulies, Carla
Tanimoto, Hiromu
Yarali, Ayse
description Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.
doi_str_mv 10.1371/journal.pone.0126986
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1681492001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A432244044</galeid><doaj_id>oai_doaj_org_article_9b64e2539ad9408db662952afaf4bf14</doaj_id><sourcerecordid>A432244044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-d4dbe722679a851992fa6a02bc648c07cc651ffcb815f6b9db88f74b149c22813</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9GAIHixa74mM7kpLGutC4WK9eMyZDLJbtaZZJtkS_vvm3WnZQcUJBcJ5zzvm8PhLYrXCE4RqdDHtd8GJ7vpxjs9hQgzXrMnxTHiBE8YhuTpwfuoeBHjGsKS1Iw9L45wyTmuID8urs-1872e_LKtBrMYvbIyWe_ALHvfRR3BV29dAsmDuXStbWXSIGtyw_gAzjqtUrAKXK28-g1mNz4TTmlgHfgUfPSble0k6HUnnV_KmHR4WTwzsov61XCfFD8-n32ff5lcXJ4v5rOLiWIlT5OWto2uMGYVl3WJ8rxGMglxoxitFaxUxpAxqqlRaVjD26auTUUbRLnCuEbkpHi79910PophW1EgVmcEQ7gjFnui9XItNsH2MtwJL634U_BhKWRIVnVa8IZRjUvCZcsprNuGMcxLLI00tDGIZq_T4bdt0-tWaZeC7Eam446zK7H0N4JSwggk2eDdYBD89VbH9I-RB2op81TWGZ_NVG-jEjNKMKYU0t0w079Q-bS6tyrnxdhcHwk-jASZSfo2LeU2RrG4-vb_7OXPMfv-gF1p2aVV9N12l7A4BukeVDk0MWjzuDkExS7uD9sQu7iLIe5Z9uZw64-ih3yTewS0-uc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681492001</pqid></control><display><type>article</type><title>Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Appel, Mirjam ; Scholz, Claus-Jürgen ; Müller, Tobias ; Dittrich, Marcus ; König, Christian ; Bockstaller, Marie ; Oguz, Tuba ; Khalili, Afshin ; Antwi-Adjei, Emmanuel ; Schauer, Tamas ; Margulies, Carla ; Tanimoto, Hiromu ; Yarali, Ayse</creator><contributor>Skoulakis, Efthimios M. C.</contributor><creatorcontrib>Appel, Mirjam ; Scholz, Claus-Jürgen ; Müller, Tobias ; Dittrich, Marcus ; König, Christian ; Bockstaller, Marie ; Oguz, Tuba ; Khalili, Afshin ; Antwi-Adjei, Emmanuel ; Schauer, Tamas ; Margulies, Carla ; Tanimoto, Hiromu ; Yarali, Ayse ; Skoulakis, Efthimios M. C.</creatorcontrib><description>Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0126986</identifier><identifier>PMID: 25992709</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Association analysis ; Associative learning ; Avoidance ; Avoidance Learning ; Bioinformatics ; Biology ; Bristles ; DNA Transposable Elements ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - physiology ; Electric shock injuries ; Electroshock ; Gene Deletion ; Gene expression ; Gene Expression Profiling ; Gene Regulatory Networks ; Gene sequencing ; Genes ; Genetic aspects ; Genetic Association Studies ; Genetics ; Genome-Wide Association Study ; Genomes ; Inbreeding ; Insects ; Locomotion ; Mutagenesis, Insertional ; Mutants ; Neurobiology ; Neurosciences ; Nociception ; Organs ; Pain perception ; Physiological aspects ; Physiology ; Protein interaction ; Proteins ; Reproducibility of Results ; Shock</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0126986</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Appel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Appel et al 2015 Appel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-d4dbe722679a851992fa6a02bc648c07cc651ffcb815f6b9db88f74b149c22813</citedby><cites>FETCH-LOGICAL-c659t-d4dbe722679a851992fa6a02bc648c07cc651ffcb815f6b9db88f74b149c22813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436303/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436303/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25992709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Skoulakis, Efthimios M. C.</contributor><creatorcontrib>Appel, Mirjam</creatorcontrib><creatorcontrib>Scholz, Claus-Jürgen</creatorcontrib><creatorcontrib>Müller, Tobias</creatorcontrib><creatorcontrib>Dittrich, Marcus</creatorcontrib><creatorcontrib>König, Christian</creatorcontrib><creatorcontrib>Bockstaller, Marie</creatorcontrib><creatorcontrib>Oguz, Tuba</creatorcontrib><creatorcontrib>Khalili, Afshin</creatorcontrib><creatorcontrib>Antwi-Adjei, Emmanuel</creatorcontrib><creatorcontrib>Schauer, Tamas</creatorcontrib><creatorcontrib>Margulies, Carla</creatorcontrib><creatorcontrib>Tanimoto, Hiromu</creatorcontrib><creatorcontrib>Yarali, Ayse</creatorcontrib><title>Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.</description><subject>Animals</subject><subject>Association analysis</subject><subject>Associative learning</subject><subject>Avoidance</subject><subject>Avoidance Learning</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Bristles</subject><subject>DNA Transposable Elements</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - physiology</subject><subject>Electric shock injuries</subject><subject>Electroshock</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies</subject><subject>Genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Inbreeding</subject><subject>Insects</subject><subject>Locomotion</subject><subject>Mutagenesis, Insertional</subject><subject>Mutants</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Nociception</subject><subject>Organs</subject><subject>Pain perception</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>Shock</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9GAIHixa74mM7kpLGutC4WK9eMyZDLJbtaZZJtkS_vvm3WnZQcUJBcJ5zzvm8PhLYrXCE4RqdDHtd8GJ7vpxjs9hQgzXrMnxTHiBE8YhuTpwfuoeBHjGsKS1Iw9L45wyTmuID8urs-1872e_LKtBrMYvbIyWe_ALHvfRR3BV29dAsmDuXStbWXSIGtyw_gAzjqtUrAKXK28-g1mNz4TTmlgHfgUfPSble0k6HUnnV_KmHR4WTwzsov61XCfFD8-n32ff5lcXJ4v5rOLiWIlT5OWto2uMGYVl3WJ8rxGMglxoxitFaxUxpAxqqlRaVjD26auTUUbRLnCuEbkpHi79910PophW1EgVmcEQ7gjFnui9XItNsH2MtwJL634U_BhKWRIVnVa8IZRjUvCZcsprNuGMcxLLI00tDGIZq_T4bdt0-tWaZeC7Eam446zK7H0N4JSwggk2eDdYBD89VbH9I-RB2op81TWGZ_NVG-jEjNKMKYU0t0w079Q-bS6tyrnxdhcHwk-jASZSfo2LeU2RrG4-vb_7OXPMfv-gF1p2aVV9N12l7A4BukeVDk0MWjzuDkExS7uD9sQu7iLIe5Z9uZw64-ih3yTewS0-uc</recordid><startdate>20150518</startdate><enddate>20150518</enddate><creator>Appel, Mirjam</creator><creator>Scholz, Claus-Jürgen</creator><creator>Müller, Tobias</creator><creator>Dittrich, Marcus</creator><creator>König, Christian</creator><creator>Bockstaller, Marie</creator><creator>Oguz, Tuba</creator><creator>Khalili, Afshin</creator><creator>Antwi-Adjei, Emmanuel</creator><creator>Schauer, Tamas</creator><creator>Margulies, Carla</creator><creator>Tanimoto, Hiromu</creator><creator>Yarali, Ayse</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150518</creationdate><title>Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster</title><author>Appel, Mirjam ; Scholz, Claus-Jürgen ; Müller, Tobias ; Dittrich, Marcus ; König, Christian ; Bockstaller, Marie ; Oguz, Tuba ; Khalili, Afshin ; Antwi-Adjei, Emmanuel ; Schauer, Tamas ; Margulies, Carla ; Tanimoto, Hiromu ; Yarali, Ayse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-d4dbe722679a851992fa6a02bc648c07cc651ffcb815f6b9db88f74b149c22813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Association analysis</topic><topic>Associative learning</topic><topic>Avoidance</topic><topic>Avoidance Learning</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Bristles</topic><topic>DNA Transposable Elements</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - physiology</topic><topic>Electric shock injuries</topic><topic>Electroshock</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies</topic><topic>Genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Inbreeding</topic><topic>Insects</topic><topic>Locomotion</topic><topic>Mutagenesis, Insertional</topic><topic>Mutants</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Nociception</topic><topic>Organs</topic><topic>Pain perception</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>Shock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Appel, Mirjam</creatorcontrib><creatorcontrib>Scholz, Claus-Jürgen</creatorcontrib><creatorcontrib>Müller, Tobias</creatorcontrib><creatorcontrib>Dittrich, Marcus</creatorcontrib><creatorcontrib>König, Christian</creatorcontrib><creatorcontrib>Bockstaller, Marie</creatorcontrib><creatorcontrib>Oguz, Tuba</creatorcontrib><creatorcontrib>Khalili, Afshin</creatorcontrib><creatorcontrib>Antwi-Adjei, Emmanuel</creatorcontrib><creatorcontrib>Schauer, Tamas</creatorcontrib><creatorcontrib>Margulies, Carla</creatorcontrib><creatorcontrib>Tanimoto, Hiromu</creatorcontrib><creatorcontrib>Yarali, Ayse</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appel, Mirjam</au><au>Scholz, Claus-Jürgen</au><au>Müller, Tobias</au><au>Dittrich, Marcus</au><au>König, Christian</au><au>Bockstaller, Marie</au><au>Oguz, Tuba</au><au>Khalili, Afshin</au><au>Antwi-Adjei, Emmanuel</au><au>Schauer, Tamas</au><au>Margulies, Carla</au><au>Tanimoto, Hiromu</au><au>Yarali, Ayse</au><au>Skoulakis, Efthimios M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-18</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0126986</spage><pages>e0126986-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25992709</pmid><doi>10.1371/journal.pone.0126986</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-05, Vol.10 (5), p.e0126986
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1681492001
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Association analysis
Associative learning
Avoidance
Avoidance Learning
Bioinformatics
Biology
Bristles
DNA Transposable Elements
Drosophila
Drosophila melanogaster
Drosophila melanogaster - physiology
Electric shock injuries
Electroshock
Gene Deletion
Gene expression
Gene Expression Profiling
Gene Regulatory Networks
Gene sequencing
Genes
Genetic aspects
Genetic Association Studies
Genetics
Genome-Wide Association Study
Genomes
Inbreeding
Insects
Locomotion
Mutagenesis, Insertional
Mutants
Neurobiology
Neurosciences
Nociception
Organs
Pain perception
Physiological aspects
Physiology
Protein interaction
Proteins
Reproducibility of Results
Shock
title Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Association%20Analyses%20Point%20to%20Candidate%20Genes%20for%20Electric%20Shock%20Avoidance%20in%20Drosophila%20melanogaster&rft.jtitle=PloS%20one&rft.au=Appel,%20Mirjam&rft.date=2015-05-18&rft.volume=10&rft.issue=5&rft.spage=e0126986&rft.pages=e0126986-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0126986&rft_dat=%3Cgale_plos_%3EA432244044%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681492001&rft_id=info:pmid/25992709&rft_galeid=A432244044&rft_doaj_id=oai_doaj_org_article_9b64e2539ad9408db662952afaf4bf14&rfr_iscdi=true