Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras

The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-05, Vol.10 (5), p.e0125817
Hauptverfasser: Garcia, Jair E, Girard, Madeline B, Kasumovic, Michael, Petersen, Phred, Wilksch, Philip A, Dyer, Adrian G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e0125817
container_title PloS one
container_volume 10
creator Garcia, Jair E
Girard, Madeline B
Kasumovic, Michael
Petersen, Phred
Wilksch, Philip A
Dyer, Adrian G
description The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of these signals, but is often limited to point samples that could underestimate spectral variability within a single sample. Algorithms for RGB images and digital imaging devices with many more than three channels, hyperspectral cameras, have been recently developed to produce image spectrophotometers to recover reflectance spectra at individual pixel locations. We compare a linearised RGB and a hyperspectral camera in terms of their individual capacities to discriminate between colour targets of varying perceptual similarity for a human observer. (1) The colour discrimination power of the RGB device is dependent on colour similarity between the samples whilst the hyperspectral device enables the reconstruction of a unique spectrum for each sampled pixel location independently from their chromatic appearance. (2) Uncertainty associated with spectral reconstruction from RGB responses results from the joint effect of metamerism and spectral variability within a single sample. (1) RGB devices give a valuable insight into the limitations of colour discrimination with a low number of photoreceptors, as the principles involved in the interpretation of photoreceptor signals in trichromatic animals also apply to RGB camera responses. (2) The hyperspectral camera architecture provides means to explore other important aspects of colour vision like the perception of certain types of camouflage and colour constancy where multiple, narrow-band sensors increase resolution.
doi_str_mv 10.1371/journal.pone.0125817
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1680492941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431693319</galeid><doaj_id>oai_doaj_org_article_5e6acab6db0944f7afa27dce949baa15</doaj_id><sourcerecordid>A431693319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c182e0ff9bf928117032707f74fcd4961c764120e6d65cb3f2547beb3f2dfe033</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBEQkJw0WI7jh1zgbQV9iENTeqAW8txjltPqV3shG3_HmdtpxbtAvnCR_bzvvY59smy1xhNcMHxp2vfB6fayco7mCBMygrzJ9khFgUZM4KKpzvxQfYixmuEyqJi7Hl2QErBSsLoYXb71RoDAVxnVWfdPD-2vvVzq1WbT1PUh5jf2G6Rn8BNrlyTf1fuLr8CF32In_OrFeguJHYG2rvYhV531ru1ZHZ6fC85u1tBiFtyqpYQVHyZPTOqjfBqM4-ynyfffkzPxheXp-fTo4uxZoJ0Y40rAsgYURtBKow5KghH3HBqdEMFw5ozigkC1rBS14UhJeU1DEFjABXFKHu79l21PspN0aLErEJUEEFxIs7XROPVtVwFu1ThTnpl5f2CD3OpQmd1C7IEprSqWVMjQanhyijCGw2CilopXCavL5vT-noJaccNOe-Z7u84u5Bz_0dSSqqKDAYfNgbB_-4hdnJpo4a2VQ58v763KDkveULf_YM-nt2GmquUgHXGp3P1YCqPaIGZKIr0TUbZ5BEqjQaWNr0sGJvW9wQf9wSJ6eC2m6s-Rnl-Nft_9vLXPvt-h12AartF9G0__Kq4D9I1qIOPMYB5KDJGcmiQbTXk0CBy0yBJ9mb3gR5E244o_gJneQyK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680492941</pqid></control><display><type>article</type><title>Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Garcia, Jair E ; Girard, Madeline B ; Kasumovic, Michael ; Petersen, Phred ; Wilksch, Philip A ; Dyer, Adrian G</creator><contributor>Osorio, Daniel</contributor><creatorcontrib>Garcia, Jair E ; Girard, Madeline B ; Kasumovic, Michael ; Petersen, Phred ; Wilksch, Philip A ; Dyer, Adrian G ; Osorio, Daniel</creatorcontrib><description>The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of these signals, but is often limited to point samples that could underestimate spectral variability within a single sample. Algorithms for RGB images and digital imaging devices with many more than three channels, hyperspectral cameras, have been recently developed to produce image spectrophotometers to recover reflectance spectra at individual pixel locations. We compare a linearised RGB and a hyperspectral camera in terms of their individual capacities to discriminate between colour targets of varying perceptual similarity for a human observer. (1) The colour discrimination power of the RGB device is dependent on colour similarity between the samples whilst the hyperspectral device enables the reconstruction of a unique spectrum for each sampled pixel location independently from their chromatic appearance. (2) Uncertainty associated with spectral reconstruction from RGB responses results from the joint effect of metamerism and spectral variability within a single sample. (1) RGB devices give a valuable insight into the limitations of colour discrimination with a low number of photoreceptors, as the principles involved in the interpretation of photoreceptor signals in trichromatic animals also apply to RGB camera responses. (2) The hyperspectral camera architecture provides means to explore other important aspects of colour vision like the perception of certain types of camouflage and colour constancy where multiple, narrow-band sensors increase resolution.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0125817</identifier><identifier>PMID: 25965264</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Cameras ; Cameras (Photography) ; Camouflage ; Color ; Color imagery ; Color vision ; Colorimetry - instrumentation ; Colorimetry - methods ; Communication ; Digital imaging ; Evolution ; Metamerism ; Perceptions ; Photoreceptors ; Pixels ; Reconstruction ; Reflectance ; Sensors ; Similarity ; Spectrophotometers ; Spectrophotometry ; Variability ; Visual discrimination ; Visual signals ; Visual stimuli</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0125817</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Garcia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Garcia et al 2015 Garcia et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c182e0ff9bf928117032707f74fcd4961c764120e6d65cb3f2547beb3f2dfe033</citedby><cites>FETCH-LOGICAL-c692t-c182e0ff9bf928117032707f74fcd4961c764120e6d65cb3f2547beb3f2dfe033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428825/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428825/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25965264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Osorio, Daniel</contributor><creatorcontrib>Garcia, Jair E</creatorcontrib><creatorcontrib>Girard, Madeline B</creatorcontrib><creatorcontrib>Kasumovic, Michael</creatorcontrib><creatorcontrib>Petersen, Phred</creatorcontrib><creatorcontrib>Wilksch, Philip A</creatorcontrib><creatorcontrib>Dyer, Adrian G</creatorcontrib><title>Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of these signals, but is often limited to point samples that could underestimate spectral variability within a single sample. Algorithms for RGB images and digital imaging devices with many more than three channels, hyperspectral cameras, have been recently developed to produce image spectrophotometers to recover reflectance spectra at individual pixel locations. We compare a linearised RGB and a hyperspectral camera in terms of their individual capacities to discriminate between colour targets of varying perceptual similarity for a human observer. (1) The colour discrimination power of the RGB device is dependent on colour similarity between the samples whilst the hyperspectral device enables the reconstruction of a unique spectrum for each sampled pixel location independently from their chromatic appearance. (2) Uncertainty associated with spectral reconstruction from RGB responses results from the joint effect of metamerism and spectral variability within a single sample. (1) RGB devices give a valuable insight into the limitations of colour discrimination with a low number of photoreceptors, as the principles involved in the interpretation of photoreceptor signals in trichromatic animals also apply to RGB camera responses. (2) The hyperspectral camera architecture provides means to explore other important aspects of colour vision like the perception of certain types of camouflage and colour constancy where multiple, narrow-band sensors increase resolution.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Cameras</subject><subject>Cameras (Photography)</subject><subject>Camouflage</subject><subject>Color</subject><subject>Color imagery</subject><subject>Color vision</subject><subject>Colorimetry - instrumentation</subject><subject>Colorimetry - methods</subject><subject>Communication</subject><subject>Digital imaging</subject><subject>Evolution</subject><subject>Metamerism</subject><subject>Perceptions</subject><subject>Photoreceptors</subject><subject>Pixels</subject><subject>Reconstruction</subject><subject>Reflectance</subject><subject>Sensors</subject><subject>Similarity</subject><subject>Spectrophotometers</subject><subject>Spectrophotometry</subject><subject>Variability</subject><subject>Visual discrimination</subject><subject>Visual signals</subject><subject>Visual stimuli</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBEQkJw0WI7jh1zgbQV9iENTeqAW8txjltPqV3shG3_HmdtpxbtAvnCR_bzvvY59smy1xhNcMHxp2vfB6fayco7mCBMygrzJ9khFgUZM4KKpzvxQfYixmuEyqJi7Hl2QErBSsLoYXb71RoDAVxnVWfdPD-2vvVzq1WbT1PUh5jf2G6Rn8BNrlyTf1fuLr8CF32In_OrFeguJHYG2rvYhV531ru1ZHZ6fC85u1tBiFtyqpYQVHyZPTOqjfBqM4-ynyfffkzPxheXp-fTo4uxZoJ0Y40rAsgYURtBKow5KghH3HBqdEMFw5ozigkC1rBS14UhJeU1DEFjABXFKHu79l21PspN0aLErEJUEEFxIs7XROPVtVwFu1ThTnpl5f2CD3OpQmd1C7IEprSqWVMjQanhyijCGw2CilopXCavL5vT-noJaccNOe-Z7u84u5Bz_0dSSqqKDAYfNgbB_-4hdnJpo4a2VQ58v763KDkveULf_YM-nt2GmquUgHXGp3P1YCqPaIGZKIr0TUbZ5BEqjQaWNr0sGJvW9wQf9wSJ6eC2m6s-Rnl-Nft_9vLXPvt-h12AartF9G0__Kq4D9I1qIOPMYB5KDJGcmiQbTXk0CBy0yBJ9mb3gR5E244o_gJneQyK</recordid><startdate>20150512</startdate><enddate>20150512</enddate><creator>Garcia, Jair E</creator><creator>Girard, Madeline B</creator><creator>Kasumovic, Michael</creator><creator>Petersen, Phred</creator><creator>Wilksch, Philip A</creator><creator>Dyer, Adrian G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150512</creationdate><title>Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras</title><author>Garcia, Jair E ; Girard, Madeline B ; Kasumovic, Michael ; Petersen, Phred ; Wilksch, Philip A ; Dyer, Adrian G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c182e0ff9bf928117032707f74fcd4961c764120e6d65cb3f2547beb3f2dfe033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Cameras</topic><topic>Cameras (Photography)</topic><topic>Camouflage</topic><topic>Color</topic><topic>Color imagery</topic><topic>Color vision</topic><topic>Colorimetry - instrumentation</topic><topic>Colorimetry - methods</topic><topic>Communication</topic><topic>Digital imaging</topic><topic>Evolution</topic><topic>Metamerism</topic><topic>Perceptions</topic><topic>Photoreceptors</topic><topic>Pixels</topic><topic>Reconstruction</topic><topic>Reflectance</topic><topic>Sensors</topic><topic>Similarity</topic><topic>Spectrophotometers</topic><topic>Spectrophotometry</topic><topic>Variability</topic><topic>Visual discrimination</topic><topic>Visual signals</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Jair E</creatorcontrib><creatorcontrib>Girard, Madeline B</creatorcontrib><creatorcontrib>Kasumovic, Michael</creatorcontrib><creatorcontrib>Petersen, Phred</creatorcontrib><creatorcontrib>Wilksch, Philip A</creatorcontrib><creatorcontrib>Dyer, Adrian G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Jair E</au><au>Girard, Madeline B</au><au>Kasumovic, Michael</au><au>Petersen, Phred</au><au>Wilksch, Philip A</au><au>Dyer, Adrian G</au><au>Osorio, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-12</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0125817</spage><pages>e0125817-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of these signals, but is often limited to point samples that could underestimate spectral variability within a single sample. Algorithms for RGB images and digital imaging devices with many more than three channels, hyperspectral cameras, have been recently developed to produce image spectrophotometers to recover reflectance spectra at individual pixel locations. We compare a linearised RGB and a hyperspectral camera in terms of their individual capacities to discriminate between colour targets of varying perceptual similarity for a human observer. (1) The colour discrimination power of the RGB device is dependent on colour similarity between the samples whilst the hyperspectral device enables the reconstruction of a unique spectrum for each sampled pixel location independently from their chromatic appearance. (2) Uncertainty associated with spectral reconstruction from RGB responses results from the joint effect of metamerism and spectral variability within a single sample. (1) RGB devices give a valuable insight into the limitations of colour discrimination with a low number of photoreceptors, as the principles involved in the interpretation of photoreceptor signals in trichromatic animals also apply to RGB camera responses. (2) The hyperspectral camera architecture provides means to explore other important aspects of colour vision like the perception of certain types of camouflage and colour constancy where multiple, narrow-band sensors increase resolution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25965264</pmid><doi>10.1371/journal.pone.0125817</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-05, Vol.10 (5), p.e0125817
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1680492941
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Animals
Cameras
Cameras (Photography)
Camouflage
Color
Color imagery
Color vision
Colorimetry - instrumentation
Colorimetry - methods
Communication
Digital imaging
Evolution
Metamerism
Perceptions
Photoreceptors
Pixels
Reconstruction
Reflectance
Sensors
Similarity
Spectrophotometers
Spectrophotometry
Variability
Visual discrimination
Visual signals
Visual stimuli
title Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiating%20Biological%20Colours%20with%20Few%20and%20Many%20Sensors:%20Spectral%20Reconstruction%20with%20RGB%20and%20Hyperspectral%20Cameras&rft.jtitle=PloS%20one&rft.au=Garcia,%20Jair%20E&rft.date=2015-05-12&rft.volume=10&rft.issue=5&rft.spage=e0125817&rft.pages=e0125817-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0125817&rft_dat=%3Cgale_plos_%3EA431693319%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680492941&rft_id=info:pmid/25965264&rft_galeid=A431693319&rft_doaj_id=oai_doaj_org_article_5e6acab6db0944f7afa27dce949baa15&rfr_iscdi=true