AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver

Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-05, Vol.10 (5), p.e0124951-e0124951
Hauptverfasser: Liu, Shudong, Jing, Fei, Yu, Chunxiao, Gao, Ling, Qin, Yejun, Zhao, Jiajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0124951
container_issue 5
container_start_page e0124951
container_title PloS one
container_volume 10
creator Liu, Shudong
Jing, Fei
Yu, Chunxiao
Gao, Ling
Qin, Yejun
Zhao, Jiajun
description Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we demonstrate that the 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced activation of AMPK directly inhibited the expression of SREBP-2 and its target genes HMGCR and HMGCS, which are key enzymes in cholesterol biosynthesis, and suppressed the TSH-stimulated up-regulation of SREBP-2 in HepG2 cells; similar results were obtained in TSH receptor knockout mice. Furthermore, AMPK, an evolutionally conserved serine/threonine kinase, phosphorylated threonine residues in the precursor and nuclear forms of SREBP-2, and TSH interacted with AMPK to influence SREBP-2 phosphorylation. These findings may represent a molecular mechanism by which AMPK ameliorates the hepatic steatosis and hypercholesterolemia associated with high TSH levels in patients with subclinical hypothyroidism (SCH).
doi_str_mv 10.1371/journal.pone.0124951
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1677645005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423835742</galeid><doaj_id>oai_doaj_org_article_c9180ccc8a68463da9540675943129c8</doaj_id><sourcerecordid>A423835742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-453b5194dde02d02f2b6c154cc9ca73e6ea41a7c6a6d6cec00e02b6fe0ff38023</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYlvhHyCIhITgIq2_k9xMCtVYKzqtage3lus4ras0LrHTsX-PQ7OpQbtAvrB1_Jz3-By_QfAOgiHEMRxtTVNXohzuTaWGACKSUvgiOIcpRhFDAL88OZ8FF9ZuAaA4Yex1cIZoijEC9DyYZdNxtoimVd5IlYeZdPognDZVaIowu5l_D6fVRq-0s-HdcjJaLq6-ziM0mtxcjxfhXLjNvXgIdRXO9EHVb4JXhSitetvtg-DHt6u78SSa3V77MrNIxjRxEaF4RWFK8lwBlANUoBWTkBIpUylirJgSBIpYMsFyJpUEwHMrVihQFDgBCA-CD0fdfWks7wZhOWRxzAht2xwE0yORG7Hl-1rvRP3AjdD8b8DUay5qp2WpuExhAqSUiWAJYTgXKSWAxTQlGKJUJl7rsqvWrHYql6pytSh7ov2bSm_42hw4IbDV8QKfO4Ha_GqUdXynrVRlKSplmuO7k8QXiz368R_0-e46ai18A7oqjK8rW1GeEYQTTGPSTmn4DOVXrnZaetcU2sd7CV96CZ5x6rdbi8ZaPl0u_p-9_dlnP52wGyVKt7GmbFqb2T5IjqCsjbW1Kp6GDAFvTf84Dd6annem92nvTz_oKenR5fgPDrP3wA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677645005</pqid></control><display><type>article</type><title>AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Shudong ; Jing, Fei ; Yu, Chunxiao ; Gao, Ling ; Qin, Yejun ; Zhao, Jiajun</creator><contributor>Zang, Mengwei</contributor><creatorcontrib>Liu, Shudong ; Jing, Fei ; Yu, Chunxiao ; Gao, Ling ; Qin, Yejun ; Zhao, Jiajun ; Zang, Mengwei</creatorcontrib><description>Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we demonstrate that the 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced activation of AMPK directly inhibited the expression of SREBP-2 and its target genes HMGCR and HMGCS, which are key enzymes in cholesterol biosynthesis, and suppressed the TSH-stimulated up-regulation of SREBP-2 in HepG2 cells; similar results were obtained in TSH receptor knockout mice. Furthermore, AMPK, an evolutionally conserved serine/threonine kinase, phosphorylated threonine residues in the precursor and nuclear forms of SREBP-2, and TSH interacted with AMPK to influence SREBP-2 phosphorylation. These findings may represent a molecular mechanism by which AMPK ameliorates the hepatic steatosis and hypercholesterolemia associated with high TSH levels in patients with subclinical hypothyroidism (SCH).</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0124951</identifier><identifier>PMID: 25933205</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Adenosine ; Aminoimidazole Carboxamide - analogs &amp; derivatives ; Aminoimidazole Carboxamide - pharmacology ; AMP ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Animals ; Atherosclerosis ; Biosynthesis ; Cardiovascular disease ; Cholesterol ; Clinical medicine ; Diabetes ; Endocrinology ; Enzyme Activation - drug effects ; Enzymes ; Fatty liver ; Fluorescent Antibody Technique ; Gene expression ; Hep G2 Cells ; Hospitals ; Humans ; Hydroxymethylglutaryl-CoA Synthase - metabolism ; Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent - metabolism ; Hypercholesterolemia ; Hypothyroidism ; Immunoglobulins ; Kinases ; Lipids ; Liver ; Liver - drug effects ; Liver - enzymology ; Liver - metabolism ; Liver - pathology ; Low density lipoprotein ; Metabolism ; Mice, Knockout ; Models, Biological ; Phosphorylation ; Phosphorylation - drug effects ; Phosphothreonine - metabolism ; Protein binding ; Protein-serine/threonine kinase ; Proteins ; Receptors, Thyrotropin - metabolism ; Ribonucleotides - pharmacology ; Rodents ; Signal Transduction - drug effects ; Steatosis ; Sterol Regulatory Element Binding Protein 2 - metabolism ; Sterol regulatory element-binding protein ; Sterols ; Studies ; Threonine ; Thyroid ; Thyroid gland ; Thyroid hormones ; Thyroid-stimulating hormone ; Thyrotropin ; Thyrotropin - metabolism ; Thyrotropin - pharmacology ; Triglycerides ; Up-Regulation - drug effects</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0124951-e0124951</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Liu et al 2015 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-453b5194dde02d02f2b6c154cc9ca73e6ea41a7c6a6d6cec00e02b6fe0ff38023</citedby><cites>FETCH-LOGICAL-c758t-453b5194dde02d02f2b6c154cc9ca73e6ea41a7c6a6d6cec00e02b6fe0ff38023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416759/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416759/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25933205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zang, Mengwei</contributor><creatorcontrib>Liu, Shudong</creatorcontrib><creatorcontrib>Jing, Fei</creatorcontrib><creatorcontrib>Yu, Chunxiao</creatorcontrib><creatorcontrib>Gao, Ling</creatorcontrib><creatorcontrib>Qin, Yejun</creatorcontrib><creatorcontrib>Zhao, Jiajun</creatorcontrib><title>AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we demonstrate that the 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced activation of AMPK directly inhibited the expression of SREBP-2 and its target genes HMGCR and HMGCS, which are key enzymes in cholesterol biosynthesis, and suppressed the TSH-stimulated up-regulation of SREBP-2 in HepG2 cells; similar results were obtained in TSH receptor knockout mice. Furthermore, AMPK, an evolutionally conserved serine/threonine kinase, phosphorylated threonine residues in the precursor and nuclear forms of SREBP-2, and TSH interacted with AMPK to influence SREBP-2 phosphorylation. These findings may represent a molecular mechanism by which AMPK ameliorates the hepatic steatosis and hypercholesterolemia associated with high TSH levels in patients with subclinical hypothyroidism (SCH).</description><subject>Activation</subject><subject>Adenosine</subject><subject>Aminoimidazole Carboxamide - analogs &amp; derivatives</subject><subject>Aminoimidazole Carboxamide - pharmacology</subject><subject>AMP</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Atherosclerosis</subject><subject>Biosynthesis</subject><subject>Cardiovascular disease</subject><subject>Cholesterol</subject><subject>Clinical medicine</subject><subject>Diabetes</subject><subject>Endocrinology</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzymes</subject><subject>Fatty liver</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene expression</subject><subject>Hep G2 Cells</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hydroxymethylglutaryl-CoA Synthase - metabolism</subject><subject>Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent - metabolism</subject><subject>Hypercholesterolemia</subject><subject>Hypothyroidism</subject><subject>Immunoglobulins</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver - drug effects</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Low density lipoprotein</subject><subject>Metabolism</subject><subject>Mice, Knockout</subject><subject>Models, Biological</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Phosphothreonine - metabolism</subject><subject>Protein binding</subject><subject>Protein-serine/threonine kinase</subject><subject>Proteins</subject><subject>Receptors, Thyrotropin - metabolism</subject><subject>Ribonucleotides - pharmacology</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Steatosis</subject><subject>Sterol Regulatory Element Binding Protein 2 - metabolism</subject><subject>Sterol regulatory element-binding protein</subject><subject>Sterols</subject><subject>Studies</subject><subject>Threonine</subject><subject>Thyroid</subject><subject>Thyroid gland</subject><subject>Thyroid hormones</subject><subject>Thyroid-stimulating hormone</subject><subject>Thyrotropin</subject><subject>Thyrotropin - metabolism</subject><subject>Thyrotropin - pharmacology</subject><subject>Triglycerides</subject><subject>Up-Regulation - drug effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYlvhHyCIhITgIq2_k9xMCtVYKzqtage3lus4ras0LrHTsX-PQ7OpQbtAvrB1_Jz3-By_QfAOgiHEMRxtTVNXohzuTaWGACKSUvgiOIcpRhFDAL88OZ8FF9ZuAaA4Yex1cIZoijEC9DyYZdNxtoimVd5IlYeZdPognDZVaIowu5l_D6fVRq-0s-HdcjJaLq6-ziM0mtxcjxfhXLjNvXgIdRXO9EHVb4JXhSitetvtg-DHt6u78SSa3V77MrNIxjRxEaF4RWFK8lwBlANUoBWTkBIpUylirJgSBIpYMsFyJpUEwHMrVihQFDgBCA-CD0fdfWks7wZhOWRxzAht2xwE0yORG7Hl-1rvRP3AjdD8b8DUay5qp2WpuExhAqSUiWAJYTgXKSWAxTQlGKJUJl7rsqvWrHYql6pytSh7ov2bSm_42hw4IbDV8QKfO4Ha_GqUdXynrVRlKSplmuO7k8QXiz368R_0-e46ai18A7oqjK8rW1GeEYQTTGPSTmn4DOVXrnZaetcU2sd7CV96CZ5x6rdbi8ZaPl0u_p-9_dlnP52wGyVKt7GmbFqb2T5IjqCsjbW1Kp6GDAFvTf84Dd6annem92nvTz_oKenR5fgPDrP3wA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Liu, Shudong</creator><creator>Jing, Fei</creator><creator>Yu, Chunxiao</creator><creator>Gao, Ling</creator><creator>Qin, Yejun</creator><creator>Zhao, Jiajun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150501</creationdate><title>AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver</title><author>Liu, Shudong ; Jing, Fei ; Yu, Chunxiao ; Gao, Ling ; Qin, Yejun ; Zhao, Jiajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-453b5194dde02d02f2b6c154cc9ca73e6ea41a7c6a6d6cec00e02b6fe0ff38023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation</topic><topic>Adenosine</topic><topic>Aminoimidazole Carboxamide - analogs &amp; derivatives</topic><topic>Aminoimidazole Carboxamide - pharmacology</topic><topic>AMP</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Atherosclerosis</topic><topic>Biosynthesis</topic><topic>Cardiovascular disease</topic><topic>Cholesterol</topic><topic>Clinical medicine</topic><topic>Diabetes</topic><topic>Endocrinology</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzymes</topic><topic>Fatty liver</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene expression</topic><topic>Hep G2 Cells</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hydroxymethylglutaryl-CoA Synthase - metabolism</topic><topic>Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent - metabolism</topic><topic>Hypercholesterolemia</topic><topic>Hypothyroidism</topic><topic>Immunoglobulins</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver - drug effects</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Low density lipoprotein</topic><topic>Metabolism</topic><topic>Mice, Knockout</topic><topic>Models, Biological</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Phosphothreonine - metabolism</topic><topic>Protein binding</topic><topic>Protein-serine/threonine kinase</topic><topic>Proteins</topic><topic>Receptors, Thyrotropin - metabolism</topic><topic>Ribonucleotides - pharmacology</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Steatosis</topic><topic>Sterol Regulatory Element Binding Protein 2 - metabolism</topic><topic>Sterol regulatory element-binding protein</topic><topic>Sterols</topic><topic>Studies</topic><topic>Threonine</topic><topic>Thyroid</topic><topic>Thyroid gland</topic><topic>Thyroid hormones</topic><topic>Thyroid-stimulating hormone</topic><topic>Thyrotropin</topic><topic>Thyrotropin - metabolism</topic><topic>Thyrotropin - pharmacology</topic><topic>Triglycerides</topic><topic>Up-Regulation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shudong</creatorcontrib><creatorcontrib>Jing, Fei</creatorcontrib><creatorcontrib>Yu, Chunxiao</creatorcontrib><creatorcontrib>Gao, Ling</creatorcontrib><creatorcontrib>Qin, Yejun</creatorcontrib><creatorcontrib>Zhao, Jiajun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shudong</au><au>Jing, Fei</au><au>Yu, Chunxiao</au><au>Gao, Ling</au><au>Qin, Yejun</au><au>Zhao, Jiajun</au><au>Zang, Mengwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0124951</spage><epage>e0124951</epage><pages>e0124951-e0124951</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we demonstrate that the 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced activation of AMPK directly inhibited the expression of SREBP-2 and its target genes HMGCR and HMGCS, which are key enzymes in cholesterol biosynthesis, and suppressed the TSH-stimulated up-regulation of SREBP-2 in HepG2 cells; similar results were obtained in TSH receptor knockout mice. Furthermore, AMPK, an evolutionally conserved serine/threonine kinase, phosphorylated threonine residues in the precursor and nuclear forms of SREBP-2, and TSH interacted with AMPK to influence SREBP-2 phosphorylation. These findings may represent a molecular mechanism by which AMPK ameliorates the hepatic steatosis and hypercholesterolemia associated with high TSH levels in patients with subclinical hypothyroidism (SCH).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25933205</pmid><doi>10.1371/journal.pone.0124951</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-05, Vol.10 (5), p.e0124951-e0124951
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1677645005
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Activation
Adenosine
Aminoimidazole Carboxamide - analogs & derivatives
Aminoimidazole Carboxamide - pharmacology
AMP
AMP-activated protein kinase
AMP-Activated Protein Kinases - metabolism
Animals
Atherosclerosis
Biosynthesis
Cardiovascular disease
Cholesterol
Clinical medicine
Diabetes
Endocrinology
Enzyme Activation - drug effects
Enzymes
Fatty liver
Fluorescent Antibody Technique
Gene expression
Hep G2 Cells
Hospitals
Humans
Hydroxymethylglutaryl-CoA Synthase - metabolism
Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent - metabolism
Hypercholesterolemia
Hypothyroidism
Immunoglobulins
Kinases
Lipids
Liver
Liver - drug effects
Liver - enzymology
Liver - metabolism
Liver - pathology
Low density lipoprotein
Metabolism
Mice, Knockout
Models, Biological
Phosphorylation
Phosphorylation - drug effects
Phosphothreonine - metabolism
Protein binding
Protein-serine/threonine kinase
Proteins
Receptors, Thyrotropin - metabolism
Ribonucleotides - pharmacology
Rodents
Signal Transduction - drug effects
Steatosis
Sterol Regulatory Element Binding Protein 2 - metabolism
Sterol regulatory element-binding protein
Sterols
Studies
Threonine
Thyroid
Thyroid gland
Thyroid hormones
Thyroid-stimulating hormone
Thyrotropin
Thyrotropin - metabolism
Thyrotropin - pharmacology
Triglycerides
Up-Regulation - drug effects
title AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AICAR-Induced%20Activation%20of%20AMPK%20Inhibits%20TSH/SREBP-2/HMGCR%20Pathway%20in%20Liver&rft.jtitle=PloS%20one&rft.au=Liu,%20Shudong&rft.date=2015-05-01&rft.volume=10&rft.issue=5&rft.spage=e0124951&rft.epage=e0124951&rft.pages=e0124951-e0124951&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0124951&rft_dat=%3Cgale_plos_%3EA423835742%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677645005&rft_id=info:pmid/25933205&rft_galeid=A423835742&rft_doaj_id=oai_doaj_org_article_c9180ccc8a68463da9540675943129c8&rfr_iscdi=true