The Structure of the T190M Mutant of Murine α-Dystroglycan at High Resolution: Insight into the Molecular Basis of a Primary Dystroglycanopathy

The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttrans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-05, Vol.10 (5), p.e0124277-e0124277
Hauptverfasser: Bozzi, Manuela, Cassetta, Alberto, Covaceuszach, Sonia, Bigotti, Maria Giulia, Bannister, Saskia, Hübner, Wolfgang, Sciandra, Francesca, Lamba, Doriano, Brancaccio, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0124277
container_issue 5
container_start_page e0124277
container_title PloS one
container_volume 10
creator Bozzi, Manuela
Cassetta, Alberto
Covaceuszach, Sonia
Bigotti, Maria Giulia
Bannister, Saskia
Hübner, Wolfgang
Sciandra, Francesca
Lamba, Doriano
Brancaccio, Andrea
description The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159-180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1-B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.
doi_str_mv 10.1371/journal.pone.0124277
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1677644952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6b4e257fece54cb2acc7999f7babfe83</doaj_id><sourcerecordid>1677882371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-8d9fde93be6981a44cc89183b74995099a194186842fa47b5bf49e564788d6013</originalsourceid><addsrcrecordid>eNptks2O0zAUhSMEYobCGyCwxIZNSuw4_mGBBMPPVJoKBGVtOc5Nm8q1i-0g9S14FV6EZyKdZEYdxMrWued-vrZPlj3FxRyXHL_a-j44bed772BeYEIJ5_eycyxLkjNSlPdP9mfZoxi3RVGVgrGH2Rmphgor8Xn2a7UB9C2F3qQ-APItSoOwwrJYomWftEtHbdmHzgH68zt_f4gp-LU9GO2QTuiyW2_QV4je9qnz7jVauDhICXUu-WvW0lswvdUBvdOxi0ecRl9Ct9PhgE5xfq_T5vA4e9BqG-HJtM6y7x8_rC4u86vPnxYXb69yUxGWctHItgFZ1sCkwJpSY4TEoqw5lbIqpNRYUiyYoKTVlNdV3VIJFaNciIYVuJxlz0fu3vqopseMCjPOGaWyIoNjMToar7dqP06svO7UteDDWumQOmNBsZoCqXgLBipqaqKN4VLKlte6bkGUA-vNdFpf76Ax4FLQ9g70bsV1G7X2PxWlmMnhq2bZywkQ_I8eYlK7LhqwVjvw_Ti3EGQIxmB98Y_1_7ejo8sEH2OA9nYYXKhjwG661DFgagrY0Pbs9CK3TTeJKv8CXJnQ6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677644952</pqid></control><display><type>article</type><title>The Structure of the T190M Mutant of Murine α-Dystroglycan at High Resolution: Insight into the Molecular Basis of a Primary Dystroglycanopathy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Bozzi, Manuela ; Cassetta, Alberto ; Covaceuszach, Sonia ; Bigotti, Maria Giulia ; Bannister, Saskia ; Hübner, Wolfgang ; Sciandra, Francesca ; Lamba, Doriano ; Brancaccio, Andrea</creator><creatorcontrib>Bozzi, Manuela ; Cassetta, Alberto ; Covaceuszach, Sonia ; Bigotti, Maria Giulia ; Bannister, Saskia ; Hübner, Wolfgang ; Sciandra, Francesca ; Lamba, Doriano ; Brancaccio, Andrea</creatorcontrib><description>The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159-180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1-B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0124277</identifier><identifier>PMID: 25932631</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Binding ; Biochemistry ; Brain ; Cell Line, Tumor ; Cloning ; Crystal structure ; Crystallography ; Denaturation ; Dystroglycan ; Dystroglycans - chemistry ; Dystrophy ; Enzymes ; Flexibility ; Glycosylation ; Humans ; Hydrogen Bonding ; Immunoglobulins ; Laminin ; Mice ; Microscopy ; Models, Molecular ; Muscles ; Muscular Dystrophies, Limb-Girdle - metabolism ; Muscular dystrophy ; Musculoskeletal system ; Mutagenesis ; Mutant Proteins - chemistry ; Mutation ; Neuromuscular diseases ; Point mutation ; Protein folding ; Protein Stability ; Protein structure ; Protein Structure, Tertiary ; Proteins ; Proteolysis ; Ribosomal protein S6 ; Skeletal muscle ; Stability ; Topology ; X-Ray Diffraction</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0124277-e0124277</ispartof><rights>2015 Bozzi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Bozzi et al 2015 Bozzi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-8d9fde93be6981a44cc89183b74995099a194186842fa47b5bf49e564788d6013</citedby><cites>FETCH-LOGICAL-c526t-8d9fde93be6981a44cc89183b74995099a194186842fa47b5bf49e564788d6013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416926/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416926/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25932631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bozzi, Manuela</creatorcontrib><creatorcontrib>Cassetta, Alberto</creatorcontrib><creatorcontrib>Covaceuszach, Sonia</creatorcontrib><creatorcontrib>Bigotti, Maria Giulia</creatorcontrib><creatorcontrib>Bannister, Saskia</creatorcontrib><creatorcontrib>Hübner, Wolfgang</creatorcontrib><creatorcontrib>Sciandra, Francesca</creatorcontrib><creatorcontrib>Lamba, Doriano</creatorcontrib><creatorcontrib>Brancaccio, Andrea</creatorcontrib><title>The Structure of the T190M Mutant of Murine α-Dystroglycan at High Resolution: Insight into the Molecular Basis of a Primary Dystroglycanopathy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159-180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1-B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.</description><subject>Animals</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Brain</subject><subject>Cell Line, Tumor</subject><subject>Cloning</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Denaturation</subject><subject>Dystroglycan</subject><subject>Dystroglycans - chemistry</subject><subject>Dystrophy</subject><subject>Enzymes</subject><subject>Flexibility</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Immunoglobulins</subject><subject>Laminin</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Muscles</subject><subject>Muscular Dystrophies, Limb-Girdle - metabolism</subject><subject>Muscular dystrophy</subject><subject>Musculoskeletal system</subject><subject>Mutagenesis</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutation</subject><subject>Neuromuscular diseases</subject><subject>Point mutation</subject><subject>Protein folding</subject><subject>Protein Stability</subject><subject>Protein structure</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Ribosomal protein S6</subject><subject>Skeletal muscle</subject><subject>Stability</subject><subject>Topology</subject><subject>X-Ray Diffraction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptks2O0zAUhSMEYobCGyCwxIZNSuw4_mGBBMPPVJoKBGVtOc5Nm8q1i-0g9S14FV6EZyKdZEYdxMrWued-vrZPlj3FxRyXHL_a-j44bed772BeYEIJ5_eycyxLkjNSlPdP9mfZoxi3RVGVgrGH2Rmphgor8Xn2a7UB9C2F3qQ-APItSoOwwrJYomWftEtHbdmHzgH68zt_f4gp-LU9GO2QTuiyW2_QV4je9qnz7jVauDhICXUu-WvW0lswvdUBvdOxi0ecRl9Ct9PhgE5xfq_T5vA4e9BqG-HJtM6y7x8_rC4u86vPnxYXb69yUxGWctHItgFZ1sCkwJpSY4TEoqw5lbIqpNRYUiyYoKTVlNdV3VIJFaNciIYVuJxlz0fu3vqopseMCjPOGaWyIoNjMToar7dqP06svO7UteDDWumQOmNBsZoCqXgLBipqaqKN4VLKlte6bkGUA-vNdFpf76Ax4FLQ9g70bsV1G7X2PxWlmMnhq2bZywkQ_I8eYlK7LhqwVjvw_Ti3EGQIxmB98Y_1_7ejo8sEH2OA9nYYXKhjwG661DFgagrY0Pbs9CK3TTeJKv8CXJnQ6w</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Bozzi, Manuela</creator><creator>Cassetta, Alberto</creator><creator>Covaceuszach, Sonia</creator><creator>Bigotti, Maria Giulia</creator><creator>Bannister, Saskia</creator><creator>Hübner, Wolfgang</creator><creator>Sciandra, Francesca</creator><creator>Lamba, Doriano</creator><creator>Brancaccio, Andrea</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150501</creationdate><title>The Structure of the T190M Mutant of Murine α-Dystroglycan at High Resolution: Insight into the Molecular Basis of a Primary Dystroglycanopathy</title><author>Bozzi, Manuela ; Cassetta, Alberto ; Covaceuszach, Sonia ; Bigotti, Maria Giulia ; Bannister, Saskia ; Hübner, Wolfgang ; Sciandra, Francesca ; Lamba, Doriano ; Brancaccio, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-8d9fde93be6981a44cc89183b74995099a194186842fa47b5bf49e564788d6013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Brain</topic><topic>Cell Line, Tumor</topic><topic>Cloning</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Denaturation</topic><topic>Dystroglycan</topic><topic>Dystroglycans - chemistry</topic><topic>Dystrophy</topic><topic>Enzymes</topic><topic>Flexibility</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Immunoglobulins</topic><topic>Laminin</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Muscles</topic><topic>Muscular Dystrophies, Limb-Girdle - metabolism</topic><topic>Muscular dystrophy</topic><topic>Musculoskeletal system</topic><topic>Mutagenesis</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutation</topic><topic>Neuromuscular diseases</topic><topic>Point mutation</topic><topic>Protein folding</topic><topic>Protein Stability</topic><topic>Protein structure</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Ribosomal protein S6</topic><topic>Skeletal muscle</topic><topic>Stability</topic><topic>Topology</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozzi, Manuela</creatorcontrib><creatorcontrib>Cassetta, Alberto</creatorcontrib><creatorcontrib>Covaceuszach, Sonia</creatorcontrib><creatorcontrib>Bigotti, Maria Giulia</creatorcontrib><creatorcontrib>Bannister, Saskia</creatorcontrib><creatorcontrib>Hübner, Wolfgang</creatorcontrib><creatorcontrib>Sciandra, Francesca</creatorcontrib><creatorcontrib>Lamba, Doriano</creatorcontrib><creatorcontrib>Brancaccio, Andrea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozzi, Manuela</au><au>Cassetta, Alberto</au><au>Covaceuszach, Sonia</au><au>Bigotti, Maria Giulia</au><au>Bannister, Saskia</au><au>Hübner, Wolfgang</au><au>Sciandra, Francesca</au><au>Lamba, Doriano</au><au>Brancaccio, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of the T190M Mutant of Murine α-Dystroglycan at High Resolution: Insight into the Molecular Basis of a Primary Dystroglycanopathy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0124277</spage><epage>e0124277</epage><pages>e0124277-e0124277</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159-180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1-B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25932631</pmid><doi>10.1371/journal.pone.0124277</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-05, Vol.10 (5), p.e0124277-e0124277
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1677644952
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Binding
Biochemistry
Brain
Cell Line, Tumor
Cloning
Crystal structure
Crystallography
Denaturation
Dystroglycan
Dystroglycans - chemistry
Dystrophy
Enzymes
Flexibility
Glycosylation
Humans
Hydrogen Bonding
Immunoglobulins
Laminin
Mice
Microscopy
Models, Molecular
Muscles
Muscular Dystrophies, Limb-Girdle - metabolism
Muscular dystrophy
Musculoskeletal system
Mutagenesis
Mutant Proteins - chemistry
Mutation
Neuromuscular diseases
Point mutation
Protein folding
Protein Stability
Protein structure
Protein Structure, Tertiary
Proteins
Proteolysis
Ribosomal protein S6
Skeletal muscle
Stability
Topology
X-Ray Diffraction
title The Structure of the T190M Mutant of Murine α-Dystroglycan at High Resolution: Insight into the Molecular Basis of a Primary Dystroglycanopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20the%20T190M%20Mutant%20of%20Murine%20%CE%B1-Dystroglycan%20at%20High%20Resolution:%20Insight%20into%20the%20Molecular%20Basis%20of%20a%20Primary%20Dystroglycanopathy&rft.jtitle=PloS%20one&rft.au=Bozzi,%20Manuela&rft.date=2015-05-01&rft.volume=10&rft.issue=5&rft.spage=e0124277&rft.epage=e0124277&rft.pages=e0124277-e0124277&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0124277&rft_dat=%3Cproquest_plos_%3E1677882371%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677644952&rft_id=info:pmid/25932631&rft_doaj_id=oai_doaj_org_article_6b4e257fece54cb2acc7999f7babfe83&rfr_iscdi=true