Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways
There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticide...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-04, Vol.10 (4), p.e0123813-e0123813 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0123813 |
---|---|
container_issue | 4 |
container_start_page | e0123813 |
container_title | PloS one |
container_volume | 10 |
creator | Bhat, Supriya V Booth, Sean C McGrath, Seamus G K Dahms, Tanya E S |
description | There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria. |
doi_str_mv | 10.1371/journal.pone.0123813 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1676337438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421488634</galeid><doaj_id>oai_doaj_org_article_2ea2be34bd0f459e8942e5c0734e0ffc</doaj_id><sourcerecordid>A421488634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d59a5999c058ba17d1f34ae6037596e7764ff98f2c61ce9036473c7e0805eeb83</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYmPwBgisISGQ1mLHzh_fIFVlwKRNQ4NxaznOSeLNsUOcdCtvx5vhrt20ol2gXCRxft93fL74RNFLgqeEZuTDhRt7K820cxammMQ0J_RRtEs4jSdpjOnje8870TPvLzBOaJ6mT6OdOOGExznbjf6cNfq3K_TYIgP12GrrvOzDW7GYooVWWgKiOSNoVspu8GhwKD5gk09aNcb1rmvAuuulVDBohWZKl-hKDw3an43X2k6O9SXsoxPXd40zrtZKGjRvpK3BH6A5GIMO7QKM6wCdQetKMNrWSNoSnXd92I6Rg3YWuSrAduiD-gQGWTgTin2TQ3Mll_559KSSxsOLzX0vOv98-GP-dXJ8-uVoPjueqJTHw6RMuEw45woneSFJVpKKMgkpplnCU8iylFUVz6tYpUQBxzRlGVUZ4BwnAEVO96LXa9_OOC826XtB0iylNGN0RRytidLJC9H1upX9Ujipxc2C62sh-5CTARGDjAugrChxxRIOOWcxJApnlAGuKhW8Pm6qjUULpVq3v2W6_cXqRtRuIRgjcZKRYPBuY9C7XyP4QbTaqxC5tODGm31nOU9wkgX0zT_ow91tqFqGBrStXKirVqZixmLC8jylLFDTB6hwldBqFY5qpcP6luD9liAwA1wPtRy9F0ffz_6fPf25zb69xzYgzdB4Z8bVgfLbIFuDqnfe91DdhUywWE3abRpiNWliM2lB9ur-D7oT3Y4W_QtEviUf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676337438</pqid></control><display><type>article</type><title>Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Bhat, Supriya V ; Booth, Sean C ; McGrath, Seamus G K ; Dahms, Tanya E S</creator><creatorcontrib>Bhat, Supriya V ; Booth, Sean C ; McGrath, Seamus G K ; Dahms, Tanya E S</creatorcontrib><description>There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0123813</identifier><identifier>PMID: 25919284</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>2,4-D ; 2,4-Dichlorophenoxyacetic Acid - pharmacology ; Acids ; Adaptation, Biological ; Agrochemicals ; Anthropogenic factors ; Auxins ; Azospirillum brasilense ; Bacteria ; Bacteroids ; Bioindicators ; Biomarkers ; Burkholderia ; Chemical pollutants ; Chemical pollution ; Dichlorophenoxyacetic acid ; Environmental effects ; Environmental stress ; Escherichia coli ; Growth regulators ; Herbicides ; Herbicides - pharmacology ; Indoleacetic Acids - chemistry ; Indoleacetic Acids - metabolism ; Legumes ; Metabolic Networks and Pathways - drug effects ; Metabolic pathways ; Metabolism ; Metabolomics ; Microscopy ; Nitrogen fixation ; Nodules ; Oxidative stress ; Pesticides ; Physical properties ; Pollutants ; Rhizobium leguminosarum - drug effects ; Rhizobium leguminosarum - physiology ; Rhizobium leguminosarum - ultrastructure ; Soil bacteria ; Soil Microbiology ; Soil microorganisms ; Soils ; Ultrastructure ; Water pollution effects</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0123813-e0123813</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Bhat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Bhat et al 2015 Bhat et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d59a5999c058ba17d1f34ae6037596e7764ff98f2c61ce9036473c7e0805eeb83</citedby><cites>FETCH-LOGICAL-c692t-d59a5999c058ba17d1f34ae6037596e7764ff98f2c61ce9036473c7e0805eeb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25919284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhat, Supriya V</creatorcontrib><creatorcontrib>Booth, Sean C</creatorcontrib><creatorcontrib>McGrath, Seamus G K</creatorcontrib><creatorcontrib>Dahms, Tanya E S</creatorcontrib><title>Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.</description><subject>2,4-D</subject><subject>2,4-Dichlorophenoxyacetic Acid - pharmacology</subject><subject>Acids</subject><subject>Adaptation, Biological</subject><subject>Agrochemicals</subject><subject>Anthropogenic factors</subject><subject>Auxins</subject><subject>Azospirillum brasilense</subject><subject>Bacteria</subject><subject>Bacteroids</subject><subject>Bioindicators</subject><subject>Biomarkers</subject><subject>Burkholderia</subject><subject>Chemical pollutants</subject><subject>Chemical pollution</subject><subject>Dichlorophenoxyacetic acid</subject><subject>Environmental effects</subject><subject>Environmental stress</subject><subject>Escherichia coli</subject><subject>Growth regulators</subject><subject>Herbicides</subject><subject>Herbicides - pharmacology</subject><subject>Indoleacetic Acids - chemistry</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Legumes</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolomics</subject><subject>Microscopy</subject><subject>Nitrogen fixation</subject><subject>Nodules</subject><subject>Oxidative stress</subject><subject>Pesticides</subject><subject>Physical properties</subject><subject>Pollutants</subject><subject>Rhizobium leguminosarum - drug effects</subject><subject>Rhizobium leguminosarum - physiology</subject><subject>Rhizobium leguminosarum - ultrastructure</subject><subject>Soil bacteria</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Ultrastructure</subject><subject>Water pollution effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYmPwBgisISGQ1mLHzh_fIFVlwKRNQ4NxaznOSeLNsUOcdCtvx5vhrt20ol2gXCRxft93fL74RNFLgqeEZuTDhRt7K820cxammMQ0J_RRtEs4jSdpjOnje8870TPvLzBOaJ6mT6OdOOGExznbjf6cNfq3K_TYIgP12GrrvOzDW7GYooVWWgKiOSNoVspu8GhwKD5gk09aNcb1rmvAuuulVDBohWZKl-hKDw3an43X2k6O9SXsoxPXd40zrtZKGjRvpK3BH6A5GIMO7QKM6wCdQetKMNrWSNoSnXd92I6Rg3YWuSrAduiD-gQGWTgTin2TQ3Mll_559KSSxsOLzX0vOv98-GP-dXJ8-uVoPjueqJTHw6RMuEw45woneSFJVpKKMgkpplnCU8iylFUVz6tYpUQBxzRlGVUZ4BwnAEVO96LXa9_OOC826XtB0iylNGN0RRytidLJC9H1upX9Ujipxc2C62sh-5CTARGDjAugrChxxRIOOWcxJApnlAGuKhW8Pm6qjUULpVq3v2W6_cXqRtRuIRgjcZKRYPBuY9C7XyP4QbTaqxC5tODGm31nOU9wkgX0zT_ow91tqFqGBrStXKirVqZixmLC8jylLFDTB6hwldBqFY5qpcP6luD9liAwA1wPtRy9F0ffz_6fPf25zb69xzYgzdB4Z8bVgfLbIFuDqnfe91DdhUywWE3abRpiNWliM2lB9ur-D7oT3Y4W_QtEviUf</recordid><startdate>20150428</startdate><enddate>20150428</enddate><creator>Bhat, Supriya V</creator><creator>Booth, Sean C</creator><creator>McGrath, Seamus G K</creator><creator>Dahms, Tanya E S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150428</creationdate><title>Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways</title><author>Bhat, Supriya V ; Booth, Sean C ; McGrath, Seamus G K ; Dahms, Tanya E S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d59a5999c058ba17d1f34ae6037596e7764ff98f2c61ce9036473c7e0805eeb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>2,4-D</topic><topic>2,4-Dichlorophenoxyacetic Acid - pharmacology</topic><topic>Acids</topic><topic>Adaptation, Biological</topic><topic>Agrochemicals</topic><topic>Anthropogenic factors</topic><topic>Auxins</topic><topic>Azospirillum brasilense</topic><topic>Bacteria</topic><topic>Bacteroids</topic><topic>Bioindicators</topic><topic>Biomarkers</topic><topic>Burkholderia</topic><topic>Chemical pollutants</topic><topic>Chemical pollution</topic><topic>Dichlorophenoxyacetic acid</topic><topic>Environmental effects</topic><topic>Environmental stress</topic><topic>Escherichia coli</topic><topic>Growth regulators</topic><topic>Herbicides</topic><topic>Herbicides - pharmacology</topic><topic>Indoleacetic Acids - chemistry</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Legumes</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolomics</topic><topic>Microscopy</topic><topic>Nitrogen fixation</topic><topic>Nodules</topic><topic>Oxidative stress</topic><topic>Pesticides</topic><topic>Physical properties</topic><topic>Pollutants</topic><topic>Rhizobium leguminosarum - drug effects</topic><topic>Rhizobium leguminosarum - physiology</topic><topic>Rhizobium leguminosarum - ultrastructure</topic><topic>Soil bacteria</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Ultrastructure</topic><topic>Water pollution effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Supriya V</creatorcontrib><creatorcontrib>Booth, Sean C</creatorcontrib><creatorcontrib>McGrath, Seamus G K</creatorcontrib><creatorcontrib>Dahms, Tanya E S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Supriya V</au><au>Booth, Sean C</au><au>McGrath, Seamus G K</au><au>Dahms, Tanya E S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-28</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0123813</spage><epage>e0123813</epage><pages>e0123813-e0123813</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25919284</pmid><doi>10.1371/journal.pone.0123813</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-04, Vol.10 (4), p.e0123813-e0123813 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1676337438 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | 2,4-D 2,4-Dichlorophenoxyacetic Acid - pharmacology Acids Adaptation, Biological Agrochemicals Anthropogenic factors Auxins Azospirillum brasilense Bacteria Bacteroids Bioindicators Biomarkers Burkholderia Chemical pollutants Chemical pollution Dichlorophenoxyacetic acid Environmental effects Environmental stress Escherichia coli Growth regulators Herbicides Herbicides - pharmacology Indoleacetic Acids - chemistry Indoleacetic Acids - metabolism Legumes Metabolic Networks and Pathways - drug effects Metabolic pathways Metabolism Metabolomics Microscopy Nitrogen fixation Nodules Oxidative stress Pesticides Physical properties Pollutants Rhizobium leguminosarum - drug effects Rhizobium leguminosarum - physiology Rhizobium leguminosarum - ultrastructure Soil bacteria Soil Microbiology Soil microorganisms Soils Ultrastructure Water pollution effects |
title | Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhizobium%20leguminosarum%20bv.%20viciae%203841%20Adapts%20to%202,4-Dichlorophenoxyacetic%20Acid%20with%20%22Auxin-Like%22%20Morphological%20Changes,%20Cell%20Envelope%20Remodeling%20and%20Upregulation%20of%20Central%20Metabolic%20Pathways&rft.jtitle=PloS%20one&rft.au=Bhat,%20Supriya%20V&rft.date=2015-04-28&rft.volume=10&rft.issue=4&rft.spage=e0123813&rft.epage=e0123813&rft.pages=e0123813-e0123813&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0123813&rft_dat=%3Cgale_plos_%3EA421488634%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676337438&rft_id=info:pmid/25919284&rft_galeid=A421488634&rft_doaj_id=oai_doaj_org_article_2ea2be34bd0f459e8942e5c0734e0ffc&rfr_iscdi=true |