CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection
African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factorie...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-04, Vol.10 (4), p.e0123714-e0123714 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0123714 |
---|---|
container_issue | 4 |
container_start_page | e0123714 |
container_title | PloS one |
container_volume | 10 |
creator | Pérez-Núñez, Daniel García-Urdiales, Eduardo Martínez-Bonet, Marta Nogal, María L Barroso, Susana Revilla, Yolanda Madrid, Ricardo |
description | African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. |
doi_str_mv | 10.1371/journal.pone.0123714 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1676337378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421817933</galeid><doaj_id>oai_doaj_org_article_b8e0cab73dea4db2a050fa83b95b2ae8</doaj_id><sourcerecordid>A421817933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f0c0f0d6cc078718a61dc8e3d37dc27f63e0f941fce0f143aa21dd0ff386cdb53</originalsourceid><addsrcrecordid>eNqNklFv0zAUhSMEYmPwDxBEQkLw0GLHSZy8IFUdg0pDmxjwajn2desqtTvb6ca_x1mzqUF7QHlwfPOdc-2bkySvMZpiQvGnte2c4e10aw1MEc5iLX-SHOOaZJMyQ-TpwftR8sL7NUIFqcryeXKUFTUuaoSOk-_z02yXLkwAx0Xw6Y0Oq3Qm-TZYl146G0CbdHY5wansnDbLdKacFtykVzfaQHoGO3BRrkAEbc3L5JnirYdXw3qS_Dr78nP-bXJ-8XUxn51PRFlnYaKQQArJUghEK4orXmIpKiCSUCkyqkoCSNU5ViKuOCecZ1hKpFQ8vpBNQU6St3vfbWs9GybhGS5pSQgltIrEYk9Iy9ds6_SGuz_Mcs3uCtYtGXdBixZYUwESvKFEAs9lk3FUIMUr0tRF3EDv9Xno1jUbkAJMcLwdmY6_GL1iS7tjeY4xqspo8GEwcPa6Ax_YRnsBbcsN2O7u3LSqCkr6Xu_-QR-_3UAtebyANsrGvqI3ZbM8wxWmNSGRmj5CxUfCRosYG6VjfST4OBJEJsBtWPLOe7a4-vH_7MXvMfv-gF0Bb8PK27brI-PHYL4HhbPeO1APQ8aI9am_nwbrU8-G1EfZm8Mf9CC6jzn5CzIC-_4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676337378</pqid></control><display><type>article</type><title>CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Pérez-Núñez, Daniel ; García-Urdiales, Eduardo ; Martínez-Bonet, Marta ; Nogal, María L ; Barroso, Susana ; Revilla, Yolanda ; Madrid, Ricardo</creator><contributor>Simas, J. Pedro</contributor><creatorcontrib>Pérez-Núñez, Daniel ; García-Urdiales, Eduardo ; Martínez-Bonet, Marta ; Nogal, María L ; Barroso, Susana ; Revilla, Yolanda ; Madrid, Ricardo ; Simas, J. Pedro</creatorcontrib><description>African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0123714</identifier><identifier>PMID: 25915900</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptor Protein Complex 1 - metabolism ; Adsorption ; African swine fever ; African Swine Fever Virus - metabolism ; African Swine Fever Virus - pathogenicity ; Amino Acid Motifs ; Animals ; Asfarviridae ; Binding ; Binding Sites ; Brefeldin A ; Cellular structure ; Cercopithecus aethiops ; COS Cells ; Fever ; Glycosylation ; Golgi apparatus ; Hemadsorption ; HIV ; Hog cholera ; Hogs ; Human immunodeficiency virus ; Infection ; Infections ; Infectivity ; Livestock ; Macrophages - virology ; Molecular modelling ; Nef protein ; Pathogenesis ; Protein Binding ; Proteins ; Suidae ; Swine ; Traffic ; Transcription factors ; Viral Proteins - chemistry ; Viral Proteins - metabolism ; Virology ; Virulence ; Virulence (Microbiology) ; Viruses</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0123714-e0123714</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Pérez-Núñez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Pérez-Núñez et al 2015 Pérez-Núñez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f0c0f0d6cc078718a61dc8e3d37dc27f63e0f941fce0f143aa21dd0ff386cdb53</citedby><cites>FETCH-LOGICAL-c692t-f0c0f0d6cc078718a61dc8e3d37dc27f63e0f941fce0f143aa21dd0ff386cdb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411086/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411086/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25915900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Simas, J. Pedro</contributor><creatorcontrib>Pérez-Núñez, Daniel</creatorcontrib><creatorcontrib>García-Urdiales, Eduardo</creatorcontrib><creatorcontrib>Martínez-Bonet, Marta</creatorcontrib><creatorcontrib>Nogal, María L</creatorcontrib><creatorcontrib>Barroso, Susana</creatorcontrib><creatorcontrib>Revilla, Yolanda</creatorcontrib><creatorcontrib>Madrid, Ricardo</creatorcontrib><title>CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.</description><subject>Adaptor Protein Complex 1 - metabolism</subject><subject>Adsorption</subject><subject>African swine fever</subject><subject>African Swine Fever Virus - metabolism</subject><subject>African Swine Fever Virus - pathogenicity</subject><subject>Amino Acid Motifs</subject><subject>Animals</subject><subject>Asfarviridae</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Brefeldin A</subject><subject>Cellular structure</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Fever</subject><subject>Glycosylation</subject><subject>Golgi apparatus</subject><subject>Hemadsorption</subject><subject>HIV</subject><subject>Hog cholera</subject><subject>Hogs</subject><subject>Human immunodeficiency virus</subject><subject>Infection</subject><subject>Infections</subject><subject>Infectivity</subject><subject>Livestock</subject><subject>Macrophages - virology</subject><subject>Molecular modelling</subject><subject>Nef protein</subject><subject>Pathogenesis</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Suidae</subject><subject>Swine</subject><subject>Traffic</subject><subject>Transcription factors</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - metabolism</subject><subject>Virology</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFv0zAUhSMEYmPwDxBEQkLw0GLHSZy8IFUdg0pDmxjwajn2desqtTvb6ca_x1mzqUF7QHlwfPOdc-2bkySvMZpiQvGnte2c4e10aw1MEc5iLX-SHOOaZJMyQ-TpwftR8sL7NUIFqcryeXKUFTUuaoSOk-_z02yXLkwAx0Xw6Y0Oq3Qm-TZYl146G0CbdHY5wansnDbLdKacFtykVzfaQHoGO3BRrkAEbc3L5JnirYdXw3qS_Dr78nP-bXJ-8XUxn51PRFlnYaKQQArJUghEK4orXmIpKiCSUCkyqkoCSNU5ViKuOCecZ1hKpFQ8vpBNQU6St3vfbWs9GybhGS5pSQgltIrEYk9Iy9ds6_SGuz_Mcs3uCtYtGXdBixZYUwESvKFEAs9lk3FUIMUr0tRF3EDv9Xno1jUbkAJMcLwdmY6_GL1iS7tjeY4xqspo8GEwcPa6Ax_YRnsBbcsN2O7u3LSqCkr6Xu_-QR-_3UAtebyANsrGvqI3ZbM8wxWmNSGRmj5CxUfCRosYG6VjfST4OBJEJsBtWPLOe7a4-vH_7MXvMfv-gF0Bb8PK27brI-PHYL4HhbPeO1APQ8aI9am_nwbrU8-G1EfZm8Mf9CC6jzn5CzIC-_4</recordid><startdate>20150427</startdate><enddate>20150427</enddate><creator>Pérez-Núñez, Daniel</creator><creator>García-Urdiales, Eduardo</creator><creator>Martínez-Bonet, Marta</creator><creator>Nogal, María L</creator><creator>Barroso, Susana</creator><creator>Revilla, Yolanda</creator><creator>Madrid, Ricardo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150427</creationdate><title>CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection</title><author>Pérez-Núñez, Daniel ; García-Urdiales, Eduardo ; Martínez-Bonet, Marta ; Nogal, María L ; Barroso, Susana ; Revilla, Yolanda ; Madrid, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f0c0f0d6cc078718a61dc8e3d37dc27f63e0f941fce0f143aa21dd0ff386cdb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptor Protein Complex 1 - metabolism</topic><topic>Adsorption</topic><topic>African swine fever</topic><topic>African Swine Fever Virus - metabolism</topic><topic>African Swine Fever Virus - pathogenicity</topic><topic>Amino Acid Motifs</topic><topic>Animals</topic><topic>Asfarviridae</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Brefeldin A</topic><topic>Cellular structure</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Fever</topic><topic>Glycosylation</topic><topic>Golgi apparatus</topic><topic>Hemadsorption</topic><topic>HIV</topic><topic>Hog cholera</topic><topic>Hogs</topic><topic>Human immunodeficiency virus</topic><topic>Infection</topic><topic>Infections</topic><topic>Infectivity</topic><topic>Livestock</topic><topic>Macrophages - virology</topic><topic>Molecular modelling</topic><topic>Nef protein</topic><topic>Pathogenesis</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Suidae</topic><topic>Swine</topic><topic>Traffic</topic><topic>Transcription factors</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - metabolism</topic><topic>Virology</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Núñez, Daniel</creatorcontrib><creatorcontrib>García-Urdiales, Eduardo</creatorcontrib><creatorcontrib>Martínez-Bonet, Marta</creatorcontrib><creatorcontrib>Nogal, María L</creatorcontrib><creatorcontrib>Barroso, Susana</creatorcontrib><creatorcontrib>Revilla, Yolanda</creatorcontrib><creatorcontrib>Madrid, Ricardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Núñez, Daniel</au><au>García-Urdiales, Eduardo</au><au>Martínez-Bonet, Marta</au><au>Nogal, María L</au><au>Barroso, Susana</au><au>Revilla, Yolanda</au><au>Madrid, Ricardo</au><au>Simas, J. Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-27</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0123714</spage><epage>e0123714</epage><pages>e0123714-e0123714</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25915900</pmid><doi>10.1371/journal.pone.0123714</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-04, Vol.10 (4), p.e0123714-e0123714 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1676337378 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Adaptor Protein Complex 1 - metabolism Adsorption African swine fever African Swine Fever Virus - metabolism African Swine Fever Virus - pathogenicity Amino Acid Motifs Animals Asfarviridae Binding Binding Sites Brefeldin A Cellular structure Cercopithecus aethiops COS Cells Fever Glycosylation Golgi apparatus Hemadsorption HIV Hog cholera Hogs Human immunodeficiency virus Infection Infections Infectivity Livestock Macrophages - virology Molecular modelling Nef protein Pathogenesis Protein Binding Proteins Suidae Swine Traffic Transcription factors Viral Proteins - chemistry Viral Proteins - metabolism Virology Virulence Virulence (Microbiology) Viruses |
title | CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CD2v%20Interacts%20with%20Adaptor%20Protein%20AP-1%20during%20African%20Swine%20Fever%20Infection&rft.jtitle=PloS%20one&rft.au=P%C3%A9rez-N%C3%BA%C3%B1ez,%20Daniel&rft.date=2015-04-27&rft.volume=10&rft.issue=4&rft.spage=e0123714&rft.epage=e0123714&rft.pages=e0123714-e0123714&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0123714&rft_dat=%3Cgale_plos_%3EA421817933%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676337378&rft_id=info:pmid/25915900&rft_galeid=A421817933&rft_doaj_id=oai_doaj_org_article_b8e0cab73dea4db2a050fa83b95b2ae8&rfr_iscdi=true |