Orthogonalization of regressors in FMRI models
The occurrence of collinearity in fMRI-based GLMs (general linear models) may reduce power or produce unreliable parameter estimates. It is commonly believed that orthogonalizing collinear regressors in the model will solve this problem, and some software packages apply automatic orthogonalization....
Gespeichert in:
Veröffentlicht in: | PloS one 2015-04, Vol.10 (4), p.e0126255-e0126255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0126255 |
---|---|
container_issue | 4 |
container_start_page | e0126255 |
container_title | PloS one |
container_volume | 10 |
creator | Mumford, Jeanette A Poline, Jean-Baptiste Poldrack, Russell A |
description | The occurrence of collinearity in fMRI-based GLMs (general linear models) may reduce power or produce unreliable parameter estimates. It is commonly believed that orthogonalizing collinear regressors in the model will solve this problem, and some software packages apply automatic orthogonalization. However, the effects of orthogonalization on the interpretation of the resulting parameter estimates is widely unappreciated or misunderstood. Here we discuss the nature and causes of collinearity in fMRI models, with a focus on the appropriate uses of orthogonalization. Special attention is given to how the two popular fMRI data analysis software packages, SPM and FSL, handle orthogonalization, and pitfalls that may be encountered in their usage. Strategies are discussed for reducing collinearity in fMRI designs and addressing their effects when they occur. |
doi_str_mv | 10.1371/journal.pone.0126255 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1676336334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421488658</galeid><doaj_id>oai_doaj_org_article_9485df2145d84262bcc18cd06a0848eb</doaj_id><sourcerecordid>A421488658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-680feaae8e7da978e5851951e67cb7d2be919e85851297014ec0c720d07f83863</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujF1CTNV2-EZXF1YGVg_bgNaXraydA2Y9KK-utNd7rLVPZCWmg5fc578p6-SfIcowznAr_budH3us32rocMYcIJYw-SU1zkZMUJyh8evZ8kT0LYIcRyyfnj5ISwAhdUytMk2_hh6xoXlewfPVjXp65OPTQeQnA-pLZPLz9fr9POVdCGp8mjWrcBns3Ps-Tb5YevF59WV5uP64vzq5URTA4rLlENWoMEUelCSGCS4YJh4MKUoiIlxPkgpyopBMIUDDKCoAqJWsYz5mfJy4PuvnVBzVaDwlzwPI83jcT6QFRO79Te207738ppq24KzjdK-8GaFlR0yqqaYMoqSeOeSmOwNBXiGkkqoYxa7-dpY9lBZaAfvG4Xossvvd2qxv1UlGIicR4F3swC3v0YIQyqs8FA2-oe3HhzbiELSiiO6Kt_0PvdzVSjowHb1y7ONZOoOqfRiZScyUhl91DxqqCzJuaitrG-aHi7aIjMAL-GRo8hqPWX6_9nN9-X7Osjdgu6HbbBteOUp7AE6QE03oXgob5bMkZqivXtNtQUazXHOra9OP5Bd023Oc7_AhB-79Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676336334</pqid></control><display><type>article</type><title>Orthogonalization of regressors in FMRI models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Mumford, Jeanette A ; Poline, Jean-Baptiste ; Poldrack, Russell A</creator><creatorcontrib>Mumford, Jeanette A ; Poline, Jean-Baptiste ; Poldrack, Russell A</creatorcontrib><description>The occurrence of collinearity in fMRI-based GLMs (general linear models) may reduce power or produce unreliable parameter estimates. It is commonly believed that orthogonalizing collinear regressors in the model will solve this problem, and some software packages apply automatic orthogonalization. However, the effects of orthogonalization on the interpretation of the resulting parameter estimates is widely unappreciated or misunderstood. Here we discuss the nature and causes of collinearity in fMRI models, with a focus on the appropriate uses of orthogonalization. Special attention is given to how the two popular fMRI data analysis software packages, SPM and FSL, handle orthogonalization, and pitfalls that may be encountered in their usage. Strategies are discussed for reducing collinearity in fMRI designs and addressing their effects when they occur.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0126255</identifier><identifier>PMID: 25919488</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Collinearity ; Computer programs ; Data analysis ; Data processing ; Functional magnetic resonance imaging ; Hemodynamics ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical models ; Models, Theoretical ; Packages ; Parameter estimation ; Reaction Time ; Regression Analysis ; Software ; Software packages</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0126255-e0126255</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Mumford et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Mumford et al 2015 Mumford et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-680feaae8e7da978e5851951e67cb7d2be919e85851297014ec0c720d07f83863</citedby><cites>FETCH-LOGICAL-c758t-680feaae8e7da978e5851951e67cb7d2be919e85851297014ec0c720d07f83863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412813/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412813/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25919488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mumford, Jeanette A</creatorcontrib><creatorcontrib>Poline, Jean-Baptiste</creatorcontrib><creatorcontrib>Poldrack, Russell A</creatorcontrib><title>Orthogonalization of regressors in FMRI models</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The occurrence of collinearity in fMRI-based GLMs (general linear models) may reduce power or produce unreliable parameter estimates. It is commonly believed that orthogonalizing collinear regressors in the model will solve this problem, and some software packages apply automatic orthogonalization. However, the effects of orthogonalization on the interpretation of the resulting parameter estimates is widely unappreciated or misunderstood. Here we discuss the nature and causes of collinearity in fMRI models, with a focus on the appropriate uses of orthogonalization. Special attention is given to how the two popular fMRI data analysis software packages, SPM and FSL, handle orthogonalization, and pitfalls that may be encountered in their usage. Strategies are discussed for reducing collinearity in fMRI designs and addressing their effects when they occur.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Collinearity</subject><subject>Computer programs</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Functional magnetic resonance imaging</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Packages</subject><subject>Parameter estimation</subject><subject>Reaction Time</subject><subject>Regression Analysis</subject><subject>Software</subject><subject>Software packages</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujF1CTNV2-EZXF1YGVg_bgNaXraydA2Y9KK-utNd7rLVPZCWmg5fc578p6-SfIcowznAr_budH3us32rocMYcIJYw-SU1zkZMUJyh8evZ8kT0LYIcRyyfnj5ISwAhdUytMk2_hh6xoXlewfPVjXp65OPTQeQnA-pLZPLz9fr9POVdCGp8mjWrcBns3Ps-Tb5YevF59WV5uP64vzq5URTA4rLlENWoMEUelCSGCS4YJh4MKUoiIlxPkgpyopBMIUDDKCoAqJWsYz5mfJy4PuvnVBzVaDwlzwPI83jcT6QFRO79Te207738ppq24KzjdK-8GaFlR0yqqaYMoqSeOeSmOwNBXiGkkqoYxa7-dpY9lBZaAfvG4Xossvvd2qxv1UlGIicR4F3swC3v0YIQyqs8FA2-oe3HhzbiELSiiO6Kt_0PvdzVSjowHb1y7ONZOoOqfRiZScyUhl91DxqqCzJuaitrG-aHi7aIjMAL-GRo8hqPWX6_9nN9-X7Osjdgu6HbbBteOUp7AE6QE03oXgob5bMkZqivXtNtQUazXHOra9OP5Bd023Oc7_AhB-79Q</recordid><startdate>20150428</startdate><enddate>20150428</enddate><creator>Mumford, Jeanette A</creator><creator>Poline, Jean-Baptiste</creator><creator>Poldrack, Russell A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150428</creationdate><title>Orthogonalization of regressors in FMRI models</title><author>Mumford, Jeanette A ; Poline, Jean-Baptiste ; Poldrack, Russell A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-680feaae8e7da978e5851951e67cb7d2be919e85851297014ec0c720d07f83863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Collinearity</topic><topic>Computer programs</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Functional magnetic resonance imaging</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Packages</topic><topic>Parameter estimation</topic><topic>Reaction Time</topic><topic>Regression Analysis</topic><topic>Software</topic><topic>Software packages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mumford, Jeanette A</creatorcontrib><creatorcontrib>Poline, Jean-Baptiste</creatorcontrib><creatorcontrib>Poldrack, Russell A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mumford, Jeanette A</au><au>Poline, Jean-Baptiste</au><au>Poldrack, Russell A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonalization of regressors in FMRI models</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-28</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0126255</spage><epage>e0126255</epage><pages>e0126255-e0126255</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The occurrence of collinearity in fMRI-based GLMs (general linear models) may reduce power or produce unreliable parameter estimates. It is commonly believed that orthogonalizing collinear regressors in the model will solve this problem, and some software packages apply automatic orthogonalization. However, the effects of orthogonalization on the interpretation of the resulting parameter estimates is widely unappreciated or misunderstood. Here we discuss the nature and causes of collinearity in fMRI models, with a focus on the appropriate uses of orthogonalization. Special attention is given to how the two popular fMRI data analysis software packages, SPM and FSL, handle orthogonalization, and pitfalls that may be encountered in their usage. Strategies are discussed for reducing collinearity in fMRI designs and addressing their effects when they occur.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25919488</pmid><doi>10.1371/journal.pone.0126255</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-04, Vol.10 (4), p.e0126255-e0126255 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1676336334 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Analysis Collinearity Computer programs Data analysis Data processing Functional magnetic resonance imaging Hemodynamics Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical models Models, Theoretical Packages Parameter estimation Reaction Time Regression Analysis Software Software packages |
title | Orthogonalization of regressors in FMRI models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonalization%20of%20regressors%20in%20FMRI%20models&rft.jtitle=PloS%20one&rft.au=Mumford,%20Jeanette%20A&rft.date=2015-04-28&rft.volume=10&rft.issue=4&rft.spage=e0126255&rft.epage=e0126255&rft.pages=e0126255-e0126255&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0126255&rft_dat=%3Cgale_plos_%3EA421488658%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676336334&rft_id=info:pmid/25919488&rft_galeid=A421488658&rft_doaj_id=oai_doaj_org_article_9485df2145d84262bcc18cd06a0848eb&rfr_iscdi=true |