Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)

Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ prolife...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-04, Vol.10 (4), p.e0125793-e0125793
Hauptverfasser: Trussoni, Christy E, Tabibian, James H, Splinter, Patrick L, O'Hara, Steven P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0125793
container_issue 4
container_start_page e0125793
container_title PloS one
container_volume 10
creator Trussoni, Christy E
Tabibian, James H
Splinter, Patrick L
O'Hara, Steven P
description Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p
doi_str_mv 10.1371/journal.pone.0125793
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1676152223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421817939</galeid><doaj_id>oai_doaj_org_article_cdbd154a18b64621b0f95741be10bd46</doaj_id><sourcerecordid>A421817939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-63f88825e618c27227a5c581f261977b2cffae34f42c6d538d378301fe5095a13</originalsourceid><addsrcrecordid>eNptkl9v0zAUxSMEYmPwDRBEQkLdQ4v_xI7zglSqtlSqABV4thzbaVy5cWYnQ_32OGs2bYgnX9k_H99zfZLkLQQziHP46eB63wg7a12jZwAikhf4WXIJC4ymFAH8_FF9kbwK4QAAwYzSl8kFIgUkGcCXyWlrWtc6ewpCylp4o3Q62f74eT3dNKqXWqVfjDXCn9Jla7pax9qmC21t-m0nQjqXnbkVnXFNutM3vfE6DKDS_hi5tXd_ujpdCdk5HwGp26GYLNer3fXr5EUlbNBvxvUq-b1a_lp8nW6_rzeL-XYqKcLdlOKKMYaIppBJlCOUCyIJgxWisMjzEsmqEhpnVYYkVdGgwjnDAFaagIIIiK-S92fd1rrAx6kFDmlOIUEI4UhszoRy4sBbb47RL3fC8LsN5_dc-M5Iq7lUpYqTE5CVNKMIlqAqSJ7BUkNQqoxGrc_ja3151ErqpvPCPhF9etKYmu_dLc8yCAEdBCajgHc3vQ4dP5og48BFo11_13fOGCUYRPTDP-j_3X08U3sRDdRa2K4OzvbDpwU-zxBkMEaniGB2BqV3IXhdPXQNAR8idy_Ph8jxMXLx2rvHjh8u3WcM_wXfqtK8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676152223</pqid></control><display><type>article</type><title>Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Trussoni, Christy E ; Tabibian, James H ; Splinter, Patrick L ; O'Hara, Steven P</creator><contributor>Alpini, Gianfranco</contributor><creatorcontrib>Trussoni, Christy E ; Tabibian, James H ; Splinter, Patrick L ; O'Hara, Steven P ; Alpini, Gianfranco</creatorcontrib><description>Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p&lt;0.05) and proliferation (p&lt;0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p&lt;0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0125793</identifier><identifier>PMID: 25915403</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>ADAM Proteins - antagonists &amp; inhibitors ; ADAM Proteins - metabolism ; ADAM17 Protein ; Animals ; Bile ; Bile Ducts - cytology ; Bile Ducts - drug effects ; Cell activation ; Cell proliferation ; Cell Proliferation - drug effects ; Cells, Cultured ; Cholangitis ; Cirrhosis ; Cryptosporidium parvum ; Digestive System Diseases - metabolism ; Digestive System Diseases - pathology ; Enzyme Inhibitors - pharmacology ; Epidermal growth factor ; Epidermal growth factor receptors ; Epidermal growth factors ; Epithelial cells ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Grb2 protein ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Hepatitis ; Hepatitis C ; Hepatitis C virus ; Humans ; Immunofluorescence ; Inflammation ; Inhibitors ; Interleukin 6 ; Kinases ; Lipopolysaccharides ; Lipopolysaccharides - adverse effects ; Lipopolysaccharides - pharmacology ; Liver ; Liver - cytology ; Liver - metabolism ; Liver - pathology ; Liver cirrhosis ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metalloproteinase ; Mice ; Mitogens ; Mutation ; MyD88 protein ; Phosphorylation ; Polymerase chain reaction ; Primary biliary cirrhosis ; Receptor, Epidermal Growth Factor - metabolism ; Signal Transduction - drug effects ; Signaling ; siRNA ; TLR4 protein ; Toll-like receptors</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0125793-e0125793</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Trussoni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Trussoni et al 2015 Trussoni et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-63f88825e618c27227a5c581f261977b2cffae34f42c6d538d378301fe5095a13</citedby><cites>FETCH-LOGICAL-c623t-63f88825e618c27227a5c581f261977b2cffae34f42c6d538d378301fe5095a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411066/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411066/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25915403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alpini, Gianfranco</contributor><creatorcontrib>Trussoni, Christy E</creatorcontrib><creatorcontrib>Tabibian, James H</creatorcontrib><creatorcontrib>Splinter, Patrick L</creatorcontrib><creatorcontrib>O'Hara, Steven P</creatorcontrib><title>Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p&lt;0.05) and proliferation (p&lt;0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p&lt;0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.</description><subject>ADAM Proteins - antagonists &amp; inhibitors</subject><subject>ADAM Proteins - metabolism</subject><subject>ADAM17 Protein</subject><subject>Animals</subject><subject>Bile</subject><subject>Bile Ducts - cytology</subject><subject>Bile Ducts - drug effects</subject><subject>Cell activation</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Cholangitis</subject><subject>Cirrhosis</subject><subject>Cryptosporidium parvum</subject><subject>Digestive System Diseases - metabolism</subject><subject>Digestive System Diseases - pathology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>Epidermal growth factors</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Grb2 protein</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Hepatitis</subject><subject>Hepatitis C</subject><subject>Hepatitis C virus</subject><subject>Humans</subject><subject>Immunofluorescence</subject><subject>Inflammation</subject><subject>Inhibitors</subject><subject>Interleukin 6</subject><subject>Kinases</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - adverse effects</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Liver</subject><subject>Liver - cytology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Liver cirrhosis</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metalloproteinase</subject><subject>Mice</subject><subject>Mitogens</subject><subject>Mutation</subject><subject>MyD88 protein</subject><subject>Phosphorylation</subject><subject>Polymerase chain reaction</subject><subject>Primary biliary cirrhosis</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>siRNA</subject><subject>TLR4 protein</subject><subject>Toll-like receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkl9v0zAUxSMEYmPwDRBEQkLdQ4v_xI7zglSqtlSqABV4thzbaVy5cWYnQ_32OGs2bYgnX9k_H99zfZLkLQQziHP46eB63wg7a12jZwAikhf4WXIJC4ymFAH8_FF9kbwK4QAAwYzSl8kFIgUkGcCXyWlrWtc6ewpCylp4o3Q62f74eT3dNKqXWqVfjDXCn9Jla7pax9qmC21t-m0nQjqXnbkVnXFNutM3vfE6DKDS_hi5tXd_ujpdCdk5HwGp26GYLNer3fXr5EUlbNBvxvUq-b1a_lp8nW6_rzeL-XYqKcLdlOKKMYaIppBJlCOUCyIJgxWisMjzEsmqEhpnVYYkVdGgwjnDAFaagIIIiK-S92fd1rrAx6kFDmlOIUEI4UhszoRy4sBbb47RL3fC8LsN5_dc-M5Iq7lUpYqTE5CVNKMIlqAqSJ7BUkNQqoxGrc_ja3151ErqpvPCPhF9etKYmu_dLc8yCAEdBCajgHc3vQ4dP5og48BFo11_13fOGCUYRPTDP-j_3X08U3sRDdRa2K4OzvbDpwU-zxBkMEaniGB2BqV3IXhdPXQNAR8idy_Ph8jxMXLx2rvHjh8u3WcM_wXfqtK8</recordid><startdate>20150427</startdate><enddate>20150427</enddate><creator>Trussoni, Christy E</creator><creator>Tabibian, James H</creator><creator>Splinter, Patrick L</creator><creator>O'Hara, Steven P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150427</creationdate><title>Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)</title><author>Trussoni, Christy E ; Tabibian, James H ; Splinter, Patrick L ; O'Hara, Steven P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-63f88825e618c27227a5c581f261977b2cffae34f42c6d538d378301fe5095a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ADAM Proteins - antagonists &amp; inhibitors</topic><topic>ADAM Proteins - metabolism</topic><topic>ADAM17 Protein</topic><topic>Animals</topic><topic>Bile</topic><topic>Bile Ducts - cytology</topic><topic>Bile Ducts - drug effects</topic><topic>Cell activation</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Cholangitis</topic><topic>Cirrhosis</topic><topic>Cryptosporidium parvum</topic><topic>Digestive System Diseases - metabolism</topic><topic>Digestive System Diseases - pathology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>Epidermal growth factors</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Grb2 protein</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Hepatitis</topic><topic>Hepatitis C</topic><topic>Hepatitis C virus</topic><topic>Humans</topic><topic>Immunofluorescence</topic><topic>Inflammation</topic><topic>Inhibitors</topic><topic>Interleukin 6</topic><topic>Kinases</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - adverse effects</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Liver</topic><topic>Liver - cytology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Liver cirrhosis</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metalloproteinase</topic><topic>Mice</topic><topic>Mitogens</topic><topic>Mutation</topic><topic>MyD88 protein</topic><topic>Phosphorylation</topic><topic>Polymerase chain reaction</topic><topic>Primary biliary cirrhosis</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>siRNA</topic><topic>TLR4 protein</topic><topic>Toll-like receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trussoni, Christy E</creatorcontrib><creatorcontrib>Tabibian, James H</creatorcontrib><creatorcontrib>Splinter, Patrick L</creatorcontrib><creatorcontrib>O'Hara, Steven P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trussoni, Christy E</au><au>Tabibian, James H</au><au>Splinter, Patrick L</au><au>O'Hara, Steven P</au><au>Alpini, Gianfranco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-27</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0125793</spage><epage>e0125793</epage><pages>e0125793-e0125793</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p&lt;0.05) and proliferation (p&lt;0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p&lt;0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25915403</pmid><doi>10.1371/journal.pone.0125793</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-04, Vol.10 (4), p.e0125793-e0125793
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1676152223
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects ADAM Proteins - antagonists & inhibitors
ADAM Proteins - metabolism
ADAM17 Protein
Animals
Bile
Bile Ducts - cytology
Bile Ducts - drug effects
Cell activation
Cell proliferation
Cell Proliferation - drug effects
Cells, Cultured
Cholangitis
Cirrhosis
Cryptosporidium parvum
Digestive System Diseases - metabolism
Digestive System Diseases - pathology
Enzyme Inhibitors - pharmacology
Epidermal growth factor
Epidermal growth factor receptors
Epidermal growth factors
Epithelial cells
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Grb2 protein
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
Hepatitis
Hepatitis C
Hepatitis C virus
Humans
Immunofluorescence
Inflammation
Inhibitors
Interleukin 6
Kinases
Lipopolysaccharides
Lipopolysaccharides - adverse effects
Lipopolysaccharides - pharmacology
Liver
Liver - cytology
Liver - metabolism
Liver - pathology
Liver cirrhosis
Membrane Proteins - genetics
Membrane Proteins - metabolism
Metalloproteinase
Mice
Mitogens
Mutation
MyD88 protein
Phosphorylation
Polymerase chain reaction
Primary biliary cirrhosis
Receptor, Epidermal Growth Factor - metabolism
Signal Transduction - drug effects
Signaling
siRNA
TLR4 protein
Toll-like receptors
title Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipopolysaccharide%20(LPS)-Induced%20Biliary%20Epithelial%20Cell%20NRas%20Activation%20Requires%20Epidermal%20Growth%20Factor%20Receptor%20(EGFR)&rft.jtitle=PloS%20one&rft.au=Trussoni,%20Christy%20E&rft.date=2015-04-27&rft.volume=10&rft.issue=4&rft.spage=e0125793&rft.epage=e0125793&rft.pages=e0125793-e0125793&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0125793&rft_dat=%3Cgale_plos_%3EA421817939%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676152223&rft_id=info:pmid/25915403&rft_galeid=A421817939&rft_doaj_id=oai_doaj_org_article_cdbd154a18b64621b0f95741be10bd46&rfr_iscdi=true