MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein

Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-04, Vol.10 (4), p.e0124873-e0124873
Hauptverfasser: Zuo, Jianjun, Wu, Fan, Liu, Yihua, Xiao, Juan, Xu, Mei, Yu, Qinping, Xia, Minhao, He, Xiaojun, Zou, Shigeng, Tan, Huize, Feng, Dingyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0124873
container_issue 4
container_start_page e0124873
container_title PloS one
container_volume 10
creator Zuo, Jianjun
Wu, Fan
Liu, Yihua
Xiao, Juan
Xu, Mei
Yu, Qinping
Xia, Minhao
He, Xiaojun
Zou, Shigeng
Tan, Huize
Feng, Dingyuan
description Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.
doi_str_mv 10.1371/journal.pone.0124873
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1676152036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421817903</galeid><doaj_id>oai_doaj_org_article_9e1925f0b5634afa8c6b74f1a55ce6c3</doaj_id><sourcerecordid>A421817903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-6f26ca9a1d60d1b12e7f420bf5b05f35f52fb24e58efb8f02dbde78bcd127d293</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0GI7sZ28IFXT2CqtbCoDiSfLcezWU2IX20Hs2-O03dSgPSA_2PL97n--812WvUZwinKGPt263lvRTjfOqilEuChZ_iQ7RlWOJxTD_OnB-Sh7EcIthCQvKX2eHWFSIVLl7DjbLIz0bvl1Bm68sEF6s4muU-DaO21aBWYpxF0wARgLrp2Xxiqw6INMJmEbENcKnGmtZAROg84sJ6jIgbNbw-LnBQPnyu7QpBiVsS-zZ1q0Qb3a7yfZ9y9nN6cXk8ur8_np7HIiGSnjhGpMpagEaihsUI2wYrrAsNakhkTnRBOsa1woUipdlxripm4UK2vZIMwaXOUn2dud7qZ1ge-LFTiijCKSSkITMd8RjRO3fONNJ_wdd8Lw7YXzKy58NClVXilUYaJhTWheCC1KSWtWaCQIkYrKPGl93kfr6041UtnoRTsSHVusWfOV-82LAsGKsCTwYS_g3a9ehcg7E6RqW2GV67fvZmVJKB0ye_cP-nh2e2olUgLGapfiykGUzwqMSsQqOLx7-giVVqM6I1NnDU0wdvg4ckhMVH_iSvQh8Pm35f-zVz_G7PsDdq1EG9fBtX00zoYxWOzA1LYheKUfiowgHwbjvhp8GAy-H4zk9ubwgx6c7ich_wuMBwck</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676152036</pqid></control><display><type>article</type><title>MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zuo, Jianjun ; Wu, Fan ; Liu, Yihua ; Xiao, Juan ; Xu, Mei ; Yu, Qinping ; Xia, Minhao ; He, Xiaojun ; Zou, Shigeng ; Tan, Huize ; Feng, Dingyuan</creator><contributor>Jeyaseelan, Kandiah</contributor><creatorcontrib>Zuo, Jianjun ; Wu, Fan ; Liu, Yihua ; Xiao, Juan ; Xu, Mei ; Yu, Qinping ; Xia, Minhao ; He, Xiaojun ; Zou, Shigeng ; Tan, Huize ; Feng, Dingyuan ; Jeyaseelan, Kandiah</creatorcontrib><description>Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0124873</identifier><identifier>PMID: 25915937</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal sciences ; Animals ; Binding sites ; Biological activity ; Cells (biology) ; Cellular biology ; Enzymes ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genes ; Genetic research ; High-Throughput Nucleotide Sequencing ; Histology ; Kinases ; Lymphocytes ; Male ; MAP kinase ; Meat quality ; Metabolism ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - physiology ; Muscle proteins ; Muscles ; Musculoskeletal system ; MYH7 gene ; Myocyte enhancer factor 2 ; Myosin ; Myosin Heavy Chains - genetics ; Myosin Heavy Chains - metabolism ; NF-AT protein ; Peroxisome proliferator-activated receptors ; Phenotypes ; Physiological aspects ; Physiology ; Protein kinase ; Proteins ; Ribonucleic acid ; RNA ; RNA polymerase ; Sequence Analysis, RNA ; Signal transduction ; Signaling ; Skeletal muscle ; Suidae ; Swine - growth &amp; development ; Transcription factors ; Transfection ; Weaning ; Zoology</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0124873-e0124873</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Zuo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Zuo et al 2015 Zuo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-6f26ca9a1d60d1b12e7f420bf5b05f35f52fb24e58efb8f02dbde78bcd127d293</citedby><cites>FETCH-LOGICAL-c758t-6f26ca9a1d60d1b12e7f420bf5b05f35f52fb24e58efb8f02dbde78bcd127d293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410957/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410957/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25915937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jeyaseelan, Kandiah</contributor><creatorcontrib>Zuo, Jianjun</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Liu, Yihua</creatorcontrib><creatorcontrib>Xiao, Juan</creatorcontrib><creatorcontrib>Xu, Mei</creatorcontrib><creatorcontrib>Yu, Qinping</creatorcontrib><creatorcontrib>Xia, Minhao</creatorcontrib><creatorcontrib>He, Xiaojun</creatorcontrib><creatorcontrib>Zou, Shigeng</creatorcontrib><creatorcontrib>Tan, Huize</creatorcontrib><creatorcontrib>Feng, Dingyuan</creatorcontrib><title>MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.</description><subject>Animal sciences</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biological activity</subject><subject>Cells (biology)</subject><subject>Cellular biology</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genes</subject><subject>Genetic research</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Histology</subject><subject>Kinases</subject><subject>Lymphocytes</subject><subject>Male</subject><subject>MAP kinase</subject><subject>Meat quality</subject><subject>Metabolism</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Muscle proteins</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>MYH7 gene</subject><subject>Myocyte enhancer factor 2</subject><subject>Myosin</subject><subject>Myosin Heavy Chains - genetics</subject><subject>Myosin Heavy Chains - metabolism</subject><subject>NF-AT protein</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Sequence Analysis, RNA</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Suidae</subject><subject>Swine - growth &amp; development</subject><subject>Transcription factors</subject><subject>Transfection</subject><subject>Weaning</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0GI7sZ28IFXT2CqtbCoDiSfLcezWU2IX20Hs2-O03dSgPSA_2PL97n--812WvUZwinKGPt263lvRTjfOqilEuChZ_iQ7RlWOJxTD_OnB-Sh7EcIthCQvKX2eHWFSIVLl7DjbLIz0bvl1Bm68sEF6s4muU-DaO21aBWYpxF0wARgLrp2Xxiqw6INMJmEbENcKnGmtZAROg84sJ6jIgbNbw-LnBQPnyu7QpBiVsS-zZ1q0Qb3a7yfZ9y9nN6cXk8ur8_np7HIiGSnjhGpMpagEaihsUI2wYrrAsNakhkTnRBOsa1woUipdlxripm4UK2vZIMwaXOUn2dud7qZ1ge-LFTiijCKSSkITMd8RjRO3fONNJ_wdd8Lw7YXzKy58NClVXilUYaJhTWheCC1KSWtWaCQIkYrKPGl93kfr6041UtnoRTsSHVusWfOV-82LAsGKsCTwYS_g3a9ehcg7E6RqW2GV67fvZmVJKB0ye_cP-nh2e2olUgLGapfiykGUzwqMSsQqOLx7-giVVqM6I1NnDU0wdvg4ckhMVH_iSvQh8Pm35f-zVz_G7PsDdq1EG9fBtX00zoYxWOzA1LYheKUfiowgHwbjvhp8GAy-H4zk9ubwgx6c7ich_wuMBwck</recordid><startdate>20150427</startdate><enddate>20150427</enddate><creator>Zuo, Jianjun</creator><creator>Wu, Fan</creator><creator>Liu, Yihua</creator><creator>Xiao, Juan</creator><creator>Xu, Mei</creator><creator>Yu, Qinping</creator><creator>Xia, Minhao</creator><creator>He, Xiaojun</creator><creator>Zou, Shigeng</creator><creator>Tan, Huize</creator><creator>Feng, Dingyuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150427</creationdate><title>MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein</title><author>Zuo, Jianjun ; Wu, Fan ; Liu, Yihua ; Xiao, Juan ; Xu, Mei ; Yu, Qinping ; Xia, Minhao ; He, Xiaojun ; Zou, Shigeng ; Tan, Huize ; Feng, Dingyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-6f26ca9a1d60d1b12e7f420bf5b05f35f52fb24e58efb8f02dbde78bcd127d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal sciences</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biological activity</topic><topic>Cells (biology)</topic><topic>Cellular biology</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genes</topic><topic>Genetic research</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Histology</topic><topic>Kinases</topic><topic>Lymphocytes</topic><topic>Male</topic><topic>MAP kinase</topic><topic>Meat quality</topic><topic>Metabolism</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Muscle proteins</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>MYH7 gene</topic><topic>Myocyte enhancer factor 2</topic><topic>Myosin</topic><topic>Myosin Heavy Chains - genetics</topic><topic>Myosin Heavy Chains - metabolism</topic><topic>NF-AT protein</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Sequence Analysis, RNA</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Suidae</topic><topic>Swine - growth &amp; development</topic><topic>Transcription factors</topic><topic>Transfection</topic><topic>Weaning</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Jianjun</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Liu, Yihua</creatorcontrib><creatorcontrib>Xiao, Juan</creatorcontrib><creatorcontrib>Xu, Mei</creatorcontrib><creatorcontrib>Yu, Qinping</creatorcontrib><creatorcontrib>Xia, Minhao</creatorcontrib><creatorcontrib>He, Xiaojun</creatorcontrib><creatorcontrib>Zou, Shigeng</creatorcontrib><creatorcontrib>Tan, Huize</creatorcontrib><creatorcontrib>Feng, Dingyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Jianjun</au><au>Wu, Fan</au><au>Liu, Yihua</au><au>Xiao, Juan</au><au>Xu, Mei</au><au>Yu, Qinping</au><au>Xia, Minhao</au><au>He, Xiaojun</au><au>Zou, Shigeng</au><au>Tan, Huize</au><au>Feng, Dingyuan</au><au>Jeyaseelan, Kandiah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-27</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0124873</spage><epage>e0124873</epage><pages>e0124873-e0124873</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25915937</pmid><doi>10.1371/journal.pone.0124873</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-04, Vol.10 (4), p.e0124873-e0124873
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1676152036
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animal sciences
Animals
Binding sites
Biological activity
Cells (biology)
Cellular biology
Enzymes
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Developmental
Genes
Genetic research
High-Throughput Nucleotide Sequencing
Histology
Kinases
Lymphocytes
Male
MAP kinase
Meat quality
Metabolism
MicroRNA
MicroRNAs
MicroRNAs - genetics
miRNA
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - physiology
Muscle proteins
Muscles
Musculoskeletal system
MYH7 gene
Myocyte enhancer factor 2
Myosin
Myosin Heavy Chains - genetics
Myosin Heavy Chains - metabolism
NF-AT protein
Peroxisome proliferator-activated receptors
Phenotypes
Physiological aspects
Physiology
Protein kinase
Proteins
Ribonucleic acid
RNA
RNA polymerase
Sequence Analysis, RNA
Signal transduction
Signaling
Skeletal muscle
Suidae
Swine - growth & development
Transcription factors
Transfection
Weaning
Zoology
title MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%20Transcriptome%20Profile%20Analysis%20in%20Porcine%20Muscle%20and%20the%20Effect%20of%20miR-143%20on%20the%20MYH7%20Gene%20and%20Protein&rft.jtitle=PloS%20one&rft.au=Zuo,%20Jianjun&rft.date=2015-04-27&rft.volume=10&rft.issue=4&rft.spage=e0124873&rft.epage=e0124873&rft.pages=e0124873-e0124873&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0124873&rft_dat=%3Cgale_plos_%3EA421817903%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676152036&rft_id=info:pmid/25915937&rft_galeid=A421817903&rft_doaj_id=oai_doaj_org_article_9e1925f0b5634afa8c6b74f1a55ce6c3&rfr_iscdi=true