MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein
Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-04, Vol.10 (4), p.e0124873-e0124873 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0124873 |
---|---|
container_issue | 4 |
container_start_page | e0124873 |
container_title | PloS one |
container_volume | 10 |
creator | Zuo, Jianjun Wu, Fan Liu, Yihua Xiao, Juan Xu, Mei Yu, Qinping Xia, Minhao He, Xiaojun Zou, Shigeng Tan, Huize Feng, Dingyuan |
description | Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway. |
doi_str_mv | 10.1371/journal.pone.0124873 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1676152036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421817903</galeid><doaj_id>oai_doaj_org_article_9e1925f0b5634afa8c6b74f1a55ce6c3</doaj_id><sourcerecordid>A421817903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-6f26ca9a1d60d1b12e7f420bf5b05f35f52fb24e58efb8f02dbde78bcd127d293</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0GI7sZ28IFXT2CqtbCoDiSfLcezWU2IX20Hs2-O03dSgPSA_2PL97n--812WvUZwinKGPt263lvRTjfOqilEuChZ_iQ7RlWOJxTD_OnB-Sh7EcIthCQvKX2eHWFSIVLl7DjbLIz0bvl1Bm68sEF6s4muU-DaO21aBWYpxF0wARgLrp2Xxiqw6INMJmEbENcKnGmtZAROg84sJ6jIgbNbw-LnBQPnyu7QpBiVsS-zZ1q0Qb3a7yfZ9y9nN6cXk8ur8_np7HIiGSnjhGpMpagEaihsUI2wYrrAsNakhkTnRBOsa1woUipdlxripm4UK2vZIMwaXOUn2dud7qZ1ge-LFTiijCKSSkITMd8RjRO3fONNJ_wdd8Lw7YXzKy58NClVXilUYaJhTWheCC1KSWtWaCQIkYrKPGl93kfr6041UtnoRTsSHVusWfOV-82LAsGKsCTwYS_g3a9ehcg7E6RqW2GV67fvZmVJKB0ye_cP-nh2e2olUgLGapfiykGUzwqMSsQqOLx7-giVVqM6I1NnDU0wdvg4ckhMVH_iSvQh8Pm35f-zVz_G7PsDdq1EG9fBtX00zoYxWOzA1LYheKUfiowgHwbjvhp8GAy-H4zk9ubwgx6c7ich_wuMBwck</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676152036</pqid></control><display><type>article</type><title>MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zuo, Jianjun ; Wu, Fan ; Liu, Yihua ; Xiao, Juan ; Xu, Mei ; Yu, Qinping ; Xia, Minhao ; He, Xiaojun ; Zou, Shigeng ; Tan, Huize ; Feng, Dingyuan</creator><contributor>Jeyaseelan, Kandiah</contributor><creatorcontrib>Zuo, Jianjun ; Wu, Fan ; Liu, Yihua ; Xiao, Juan ; Xu, Mei ; Yu, Qinping ; Xia, Minhao ; He, Xiaojun ; Zou, Shigeng ; Tan, Huize ; Feng, Dingyuan ; Jeyaseelan, Kandiah</creatorcontrib><description>Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0124873</identifier><identifier>PMID: 25915937</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal sciences ; Animals ; Binding sites ; Biological activity ; Cells (biology) ; Cellular biology ; Enzymes ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genes ; Genetic research ; High-Throughput Nucleotide Sequencing ; Histology ; Kinases ; Lymphocytes ; Male ; MAP kinase ; Meat quality ; Metabolism ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - physiology ; Muscle proteins ; Muscles ; Musculoskeletal system ; MYH7 gene ; Myocyte enhancer factor 2 ; Myosin ; Myosin Heavy Chains - genetics ; Myosin Heavy Chains - metabolism ; NF-AT protein ; Peroxisome proliferator-activated receptors ; Phenotypes ; Physiological aspects ; Physiology ; Protein kinase ; Proteins ; Ribonucleic acid ; RNA ; RNA polymerase ; Sequence Analysis, RNA ; Signal transduction ; Signaling ; Skeletal muscle ; Suidae ; Swine - growth & development ; Transcription factors ; Transfection ; Weaning ; Zoology</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0124873-e0124873</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Zuo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Zuo et al 2015 Zuo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-6f26ca9a1d60d1b12e7f420bf5b05f35f52fb24e58efb8f02dbde78bcd127d293</citedby><cites>FETCH-LOGICAL-c758t-6f26ca9a1d60d1b12e7f420bf5b05f35f52fb24e58efb8f02dbde78bcd127d293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410957/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410957/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25915937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jeyaseelan, Kandiah</contributor><creatorcontrib>Zuo, Jianjun</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Liu, Yihua</creatorcontrib><creatorcontrib>Xiao, Juan</creatorcontrib><creatorcontrib>Xu, Mei</creatorcontrib><creatorcontrib>Yu, Qinping</creatorcontrib><creatorcontrib>Xia, Minhao</creatorcontrib><creatorcontrib>He, Xiaojun</creatorcontrib><creatorcontrib>Zou, Shigeng</creatorcontrib><creatorcontrib>Tan, Huize</creatorcontrib><creatorcontrib>Feng, Dingyuan</creatorcontrib><title>MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.</description><subject>Animal sciences</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biological activity</subject><subject>Cells (biology)</subject><subject>Cellular biology</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genes</subject><subject>Genetic research</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Histology</subject><subject>Kinases</subject><subject>Lymphocytes</subject><subject>Male</subject><subject>MAP kinase</subject><subject>Meat quality</subject><subject>Metabolism</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Muscle proteins</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>MYH7 gene</subject><subject>Myocyte enhancer factor 2</subject><subject>Myosin</subject><subject>Myosin Heavy Chains - genetics</subject><subject>Myosin Heavy Chains - metabolism</subject><subject>NF-AT protein</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Sequence Analysis, RNA</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Suidae</subject><subject>Swine - growth & development</subject><subject>Transcription factors</subject><subject>Transfection</subject><subject>Weaning</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQkLw0GI7sZ28IFXT2CqtbCoDiSfLcezWU2IX20Hs2-O03dSgPSA_2PL97n--812WvUZwinKGPt263lvRTjfOqilEuChZ_iQ7RlWOJxTD_OnB-Sh7EcIthCQvKX2eHWFSIVLl7DjbLIz0bvl1Bm68sEF6s4muU-DaO21aBWYpxF0wARgLrp2Xxiqw6INMJmEbENcKnGmtZAROg84sJ6jIgbNbw-LnBQPnyu7QpBiVsS-zZ1q0Qb3a7yfZ9y9nN6cXk8ur8_np7HIiGSnjhGpMpagEaihsUI2wYrrAsNakhkTnRBOsa1woUipdlxripm4UK2vZIMwaXOUn2dud7qZ1ge-LFTiijCKSSkITMd8RjRO3fONNJ_wdd8Lw7YXzKy58NClVXilUYaJhTWheCC1KSWtWaCQIkYrKPGl93kfr6041UtnoRTsSHVusWfOV-82LAsGKsCTwYS_g3a9ehcg7E6RqW2GV67fvZmVJKB0ye_cP-nh2e2olUgLGapfiykGUzwqMSsQqOLx7-giVVqM6I1NnDU0wdvg4ckhMVH_iSvQh8Pm35f-zVz_G7PsDdq1EG9fBtX00zoYxWOzA1LYheKUfiowgHwbjvhp8GAy-H4zk9ubwgx6c7ich_wuMBwck</recordid><startdate>20150427</startdate><enddate>20150427</enddate><creator>Zuo, Jianjun</creator><creator>Wu, Fan</creator><creator>Liu, Yihua</creator><creator>Xiao, Juan</creator><creator>Xu, Mei</creator><creator>Yu, Qinping</creator><creator>Xia, Minhao</creator><creator>He, Xiaojun</creator><creator>Zou, Shigeng</creator><creator>Tan, Huize</creator><creator>Feng, Dingyuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150427</creationdate><title>MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein</title><author>Zuo, Jianjun ; Wu, Fan ; Liu, Yihua ; Xiao, Juan ; Xu, Mei ; Yu, Qinping ; Xia, Minhao ; He, Xiaojun ; Zou, Shigeng ; Tan, Huize ; Feng, Dingyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-6f26ca9a1d60d1b12e7f420bf5b05f35f52fb24e58efb8f02dbde78bcd127d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal sciences</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biological activity</topic><topic>Cells (biology)</topic><topic>Cellular biology</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genes</topic><topic>Genetic research</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Histology</topic><topic>Kinases</topic><topic>Lymphocytes</topic><topic>Male</topic><topic>MAP kinase</topic><topic>Meat quality</topic><topic>Metabolism</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Muscle proteins</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>MYH7 gene</topic><topic>Myocyte enhancer factor 2</topic><topic>Myosin</topic><topic>Myosin Heavy Chains - genetics</topic><topic>Myosin Heavy Chains - metabolism</topic><topic>NF-AT protein</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Sequence Analysis, RNA</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Suidae</topic><topic>Swine - growth & development</topic><topic>Transcription factors</topic><topic>Transfection</topic><topic>Weaning</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Jianjun</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Liu, Yihua</creatorcontrib><creatorcontrib>Xiao, Juan</creatorcontrib><creatorcontrib>Xu, Mei</creatorcontrib><creatorcontrib>Yu, Qinping</creatorcontrib><creatorcontrib>Xia, Minhao</creatorcontrib><creatorcontrib>He, Xiaojun</creatorcontrib><creatorcontrib>Zou, Shigeng</creatorcontrib><creatorcontrib>Tan, Huize</creatorcontrib><creatorcontrib>Feng, Dingyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Jianjun</au><au>Wu, Fan</au><au>Liu, Yihua</au><au>Xiao, Juan</au><au>Xu, Mei</au><au>Yu, Qinping</au><au>Xia, Minhao</au><au>He, Xiaojun</au><au>Zou, Shigeng</au><au>Tan, Huize</au><au>Feng, Dingyuan</au><au>Jeyaseelan, Kandiah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-27</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0124873</spage><epage>e0124873</epage><pages>e0124873-e0124873</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25915937</pmid><doi>10.1371/journal.pone.0124873</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-04, Vol.10 (4), p.e0124873-e0124873 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1676152036 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animal sciences Animals Binding sites Biological activity Cells (biology) Cellular biology Enzymes Gene expression Gene Expression Profiling Gene Expression Regulation, Developmental Genes Genetic research High-Throughput Nucleotide Sequencing Histology Kinases Lymphocytes Male MAP kinase Meat quality Metabolism MicroRNA MicroRNAs MicroRNAs - genetics miRNA Muscle Fibers, Skeletal - cytology Muscle Fibers, Skeletal - physiology Muscle proteins Muscles Musculoskeletal system MYH7 gene Myocyte enhancer factor 2 Myosin Myosin Heavy Chains - genetics Myosin Heavy Chains - metabolism NF-AT protein Peroxisome proliferator-activated receptors Phenotypes Physiological aspects Physiology Protein kinase Proteins Ribonucleic acid RNA RNA polymerase Sequence Analysis, RNA Signal transduction Signaling Skeletal muscle Suidae Swine - growth & development Transcription factors Transfection Weaning Zoology |
title | MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%20Transcriptome%20Profile%20Analysis%20in%20Porcine%20Muscle%20and%20the%20Effect%20of%20miR-143%20on%20the%20MYH7%20Gene%20and%20Protein&rft.jtitle=PloS%20one&rft.au=Zuo,%20Jianjun&rft.date=2015-04-27&rft.volume=10&rft.issue=4&rft.spage=e0124873&rft.epage=e0124873&rft.pages=e0124873-e0124873&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0124873&rft_dat=%3Cgale_plos_%3EA421817903%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676152036&rft_id=info:pmid/25915937&rft_galeid=A421817903&rft_doaj_id=oai_doaj_org_article_9e1925f0b5634afa8c6b74f1a55ce6c3&rfr_iscdi=true |