A new extraction method of loess shoulder-line based on Marr-Hildreth operator and terrain mask
Loess shoulder-lines are significant structural lines which divide the complicated loess landform into loess interfluves and gully-slope lands. Existing extraction algorithms for shoulder-lines mainly are based on local maximum of terrain features. These algorithms are sensitive to noise for complic...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-04, Vol.10 (4), p.e0123804-e0123804 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0123804 |
---|---|
container_issue | 4 |
container_start_page | e0123804 |
container_title | PloS one |
container_volume | 10 |
creator | Jiang, Sheng Tang, Guoan Liu, Kai |
description | Loess shoulder-lines are significant structural lines which divide the complicated loess landform into loess interfluves and gully-slope lands. Existing extraction algorithms for shoulder-lines mainly are based on local maximum of terrain features. These algorithms are sensitive to noise for complicated loess surface and the extraction parameters are difficult to be determined, making the extraction results usually inaccurate. This paper presents a new extraction approach for loess shoulder-lines, in which Marr-Hildreth edge operator is employed to construct initial shoulder-lines. Then the terrain mask for confining the boundary of shoulder-lines is proposed based on slope degree classification and morphology methods, avoiding interference from non-valley area and modify the initial loess shoulder-lines. A case study is conducted in Yijun located in the northern Shanxi Loess Plateau of China. The Digital Elevation Models with a grid size of 5 m is applied as original data. To obtain optimal scale parameters, the Euclidean Distance Offset Percentages between shoulder-lines is calculated by the Marr-Hildreth operator and the manual delineations. The experimental results show that the new method could achieve the highest extraction accuracy when σ = 5 in Gaussian smoothing. According to the accuracy assessment, the average extraction accuracy is about 88.5%, which indicates that the proposed method is applicable for the extraction of loess shoulder-lines in the loess hilly and gully areas. |
doi_str_mv | 10.1371/journal.pone.0123804 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1676150432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422548082</galeid><doaj_id>oai_doaj_org_article_435d229b56d3488ea55116c745da4011</doaj_id><sourcerecordid>A422548082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a715t-c0425531f1f44f0cf8bf97627a74c3e77a4a017653075e008b72df53a370dcd73</originalsourceid><addsrcrecordid>eNqNk9uO0zAQhiMEYpeFN0AQCQnBRYqPcXqDVK2ArbRoJU631jSetC5uXOyEw9vjbLOrBu0F8oWt8Te_7d8zWfaUkhnlir7Z-j604GZ73-KMUMYrIu5lp3TOWVEywu8frU-yRzFuCZG8KsuH2QmTc0qImp9mepG3-CvH312AurO-zXfYbbzJfZM7jzHmceN7ZzAUzraYryBi2mzzjxBCcWGdCYnP_R4DdD7k0Jq8wxDAJiWI3x9nDxpwEZ-M81n29f27L-cXxeXVh-X54rIARWVX1EQwKTltaCNEQ-qmWjVzVTIFStQclQIBhKpScqIkElKtFDON5MAVMbVR_Cx7ftDdOx_16E3UtFQllURwlojlgTAetnof7A7CH-3B6uuAD2sNobO1Qy24NIzNV7I0XFQVgpSUlrUS0oAglCatt-Np_WqHpsY22ecmotOd1m702v_UQpDk_HDdV6NA8D96jJ3e2Vijc9Ci76_vrbhSUomEvvgHvft1I7WG9ADbNn740EFULwRjUlSkGqjZHVQaBne2ToXU2BSfJLyeJCSmS7Wyhj5Gvfz86f_Zq29T9uURu0Fw3SZ61w8VGKegOIB18DEGbG5NpkQPfXDjhh76QI99kNKeHX_QbdJN4fO_yeYAsQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676150432</pqid></control><display><type>article</type><title>A new extraction method of loess shoulder-line based on Marr-Hildreth operator and terrain mask</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Jiang, Sheng ; Tang, Guoan ; Liu, Kai</creator><creatorcontrib>Jiang, Sheng ; Tang, Guoan ; Liu, Kai</creatorcontrib><description>Loess shoulder-lines are significant structural lines which divide the complicated loess landform into loess interfluves and gully-slope lands. Existing extraction algorithms for shoulder-lines mainly are based on local maximum of terrain features. These algorithms are sensitive to noise for complicated loess surface and the extraction parameters are difficult to be determined, making the extraction results usually inaccurate. This paper presents a new extraction approach for loess shoulder-lines, in which Marr-Hildreth edge operator is employed to construct initial shoulder-lines. Then the terrain mask for confining the boundary of shoulder-lines is proposed based on slope degree classification and morphology methods, avoiding interference from non-valley area and modify the initial loess shoulder-lines. A case study is conducted in Yijun located in the northern Shanxi Loess Plateau of China. The Digital Elevation Models with a grid size of 5 m is applied as original data. To obtain optimal scale parameters, the Euclidean Distance Offset Percentages between shoulder-lines is calculated by the Marr-Hildreth operator and the manual delineations. The experimental results show that the new method could achieve the highest extraction accuracy when σ = 5 in Gaussian smoothing. According to the accuracy assessment, the average extraction accuracy is about 88.5%, which indicates that the proposed method is applicable for the extraction of loess shoulder-lines in the loess hilly and gully areas.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0123804</identifier><identifier>PMID: 25910079</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Case studies ; Confining ; Digital Elevation Models ; Image processing ; Loess ; Methods ; Models, Theoretical ; Noise sensitivity ; Parameter sensitivity ; Shoulder ; Slopes ; Smoothing ; Terrain ; Valleys</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0123804-e0123804</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Jiang et al 2015 Jiang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a715t-c0425531f1f44f0cf8bf97627a74c3e77a4a017653075e008b72df53a370dcd73</citedby><cites>FETCH-LOGICAL-a715t-c0425531f1f44f0cf8bf97627a74c3e77a4a017653075e008b72df53a370dcd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409107/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409107/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25910079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Sheng</creatorcontrib><creatorcontrib>Tang, Guoan</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><title>A new extraction method of loess shoulder-line based on Marr-Hildreth operator and terrain mask</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Loess shoulder-lines are significant structural lines which divide the complicated loess landform into loess interfluves and gully-slope lands. Existing extraction algorithms for shoulder-lines mainly are based on local maximum of terrain features. These algorithms are sensitive to noise for complicated loess surface and the extraction parameters are difficult to be determined, making the extraction results usually inaccurate. This paper presents a new extraction approach for loess shoulder-lines, in which Marr-Hildreth edge operator is employed to construct initial shoulder-lines. Then the terrain mask for confining the boundary of shoulder-lines is proposed based on slope degree classification and morphology methods, avoiding interference from non-valley area and modify the initial loess shoulder-lines. A case study is conducted in Yijun located in the northern Shanxi Loess Plateau of China. The Digital Elevation Models with a grid size of 5 m is applied as original data. To obtain optimal scale parameters, the Euclidean Distance Offset Percentages between shoulder-lines is calculated by the Marr-Hildreth operator and the manual delineations. The experimental results show that the new method could achieve the highest extraction accuracy when σ = 5 in Gaussian smoothing. According to the accuracy assessment, the average extraction accuracy is about 88.5%, which indicates that the proposed method is applicable for the extraction of loess shoulder-lines in the loess hilly and gully areas.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Case studies</subject><subject>Confining</subject><subject>Digital Elevation Models</subject><subject>Image processing</subject><subject>Loess</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Noise sensitivity</subject><subject>Parameter sensitivity</subject><subject>Shoulder</subject><subject>Slopes</subject><subject>Smoothing</subject><subject>Terrain</subject><subject>Valleys</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uO0zAQhiMEYpeFN0AQCQnBRYqPcXqDVK2ArbRoJU631jSetC5uXOyEw9vjbLOrBu0F8oWt8Te_7d8zWfaUkhnlir7Z-j604GZ73-KMUMYrIu5lp3TOWVEywu8frU-yRzFuCZG8KsuH2QmTc0qImp9mepG3-CvH312AurO-zXfYbbzJfZM7jzHmceN7ZzAUzraYryBi2mzzjxBCcWGdCYnP_R4DdD7k0Jq8wxDAJiWI3x9nDxpwEZ-M81n29f27L-cXxeXVh-X54rIARWVX1EQwKTltaCNEQ-qmWjVzVTIFStQclQIBhKpScqIkElKtFDON5MAVMbVR_Cx7ftDdOx_16E3UtFQllURwlojlgTAetnof7A7CH-3B6uuAD2sNobO1Qy24NIzNV7I0XFQVgpSUlrUS0oAglCatt-Np_WqHpsY22ecmotOd1m702v_UQpDk_HDdV6NA8D96jJ3e2Vijc9Ci76_vrbhSUomEvvgHvft1I7WG9ADbNn740EFULwRjUlSkGqjZHVQaBne2ToXU2BSfJLyeJCSmS7Wyhj5Gvfz86f_Zq29T9uURu0Fw3SZ61w8VGKegOIB18DEGbG5NpkQPfXDjhh76QI99kNKeHX_QbdJN4fO_yeYAsQ</recordid><startdate>20150424</startdate><enddate>20150424</enddate><creator>Jiang, Sheng</creator><creator>Tang, Guoan</creator><creator>Liu, Kai</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150424</creationdate><title>A new extraction method of loess shoulder-line based on Marr-Hildreth operator and terrain mask</title><author>Jiang, Sheng ; Tang, Guoan ; Liu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a715t-c0425531f1f44f0cf8bf97627a74c3e77a4a017653075e008b72df53a370dcd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Case studies</topic><topic>Confining</topic><topic>Digital Elevation Models</topic><topic>Image processing</topic><topic>Loess</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Noise sensitivity</topic><topic>Parameter sensitivity</topic><topic>Shoulder</topic><topic>Slopes</topic><topic>Smoothing</topic><topic>Terrain</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Sheng</creatorcontrib><creatorcontrib>Tang, Guoan</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Sheng</au><au>Tang, Guoan</au><au>Liu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new extraction method of loess shoulder-line based on Marr-Hildreth operator and terrain mask</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-24</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0123804</spage><epage>e0123804</epage><pages>e0123804-e0123804</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Loess shoulder-lines are significant structural lines which divide the complicated loess landform into loess interfluves and gully-slope lands. Existing extraction algorithms for shoulder-lines mainly are based on local maximum of terrain features. These algorithms are sensitive to noise for complicated loess surface and the extraction parameters are difficult to be determined, making the extraction results usually inaccurate. This paper presents a new extraction approach for loess shoulder-lines, in which Marr-Hildreth edge operator is employed to construct initial shoulder-lines. Then the terrain mask for confining the boundary of shoulder-lines is proposed based on slope degree classification and morphology methods, avoiding interference from non-valley area and modify the initial loess shoulder-lines. A case study is conducted in Yijun located in the northern Shanxi Loess Plateau of China. The Digital Elevation Models with a grid size of 5 m is applied as original data. To obtain optimal scale parameters, the Euclidean Distance Offset Percentages between shoulder-lines is calculated by the Marr-Hildreth operator and the manual delineations. The experimental results show that the new method could achieve the highest extraction accuracy when σ = 5 in Gaussian smoothing. According to the accuracy assessment, the average extraction accuracy is about 88.5%, which indicates that the proposed method is applicable for the extraction of loess shoulder-lines in the loess hilly and gully areas.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25910079</pmid><doi>10.1371/journal.pone.0123804</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-04, Vol.10 (4), p.e0123804-e0123804 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1676150432 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Analysis Case studies Confining Digital Elevation Models Image processing Loess Methods Models, Theoretical Noise sensitivity Parameter sensitivity Shoulder Slopes Smoothing Terrain Valleys |
title | A new extraction method of loess shoulder-line based on Marr-Hildreth operator and terrain mask |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20extraction%20method%20of%20loess%20shoulder-line%20based%20on%20Marr-Hildreth%20operator%20and%20terrain%20mask&rft.jtitle=PloS%20one&rft.au=Jiang,%20Sheng&rft.date=2015-04-24&rft.volume=10&rft.issue=4&rft.spage=e0123804&rft.epage=e0123804&rft.pages=e0123804-e0123804&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0123804&rft_dat=%3Cgale_plos_%3EA422548082%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676150432&rft_id=info:pmid/25910079&rft_galeid=A422548082&rft_doaj_id=oai_doaj_org_article_435d229b56d3488ea55116c745da4011&rfr_iscdi=true |