Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska
The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus refl...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-04, Vol.10 (4), p.e0122307-e0122307 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0122307 |
---|---|
container_issue | 4 |
container_start_page | e0122307 |
container_title | PloS one |
container_volume | 10 |
creator | Sprehn, C Grace Blum, Michael J Quinn, Thomas P Heins, David C |
description | The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype. |
doi_str_mv | 10.1371/journal.pone.0122307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1673119693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1cbb8448a2b84658872d96eea526a3e2</doaj_id><sourcerecordid>1674690096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-eecfdc0c5203d2c19c345a0fae40381a984c64f0b07ca692be0747764a1a91903</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBCIlsI_QBCJSzns4q848QWpqqBUWokDcLZenJdd73rj4JdU4t_jdrdVi7j4-WNm_MaeonjL2ZLLmn_axjkNEJZjHHDJuBCS1c-KU26kWGjB5PNH85PiFdGWsUo2Wr8sTkTV1Krm7LS4WcHQkYMRyzUOOHlHZezLH27jaYoOxw2EmUqKwXe5jpCA_IRU-qGcNgmRRj9gSZm4C9iC25XnV0ATppiHzAA3B4Rppo9ln-K-vAhAO3hdvOghEL451rPi19cvPy-_LVbfr64vL1YLVwk9LRBd3zmWF0x2wnHjpKqA9YCKyYaDaZTTqmctqx1oI1pk2VetFeQzbpg8K94fdMcQyR6fjCzXteTcaCMz4vqA6CJs7Zj8HtIfG8Hbu42Y1hZSdhfQcte2jVINiFx01TS16IxGhNwrSBRZ6_PxtrndY-dwmBKEJ6JPTwa_set4Y5U0lVR1Fjg_CqT4e0aa7N6TwxBgwDjf9a20YczoDP3wD_T_7tQB5fJ_UML-oRnO7G2M7ln2Nkb2GKNMe_fYyAPpPjfyL-PMyDk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673119693</pqid></control><display><type>article</type><title>Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sprehn, C Grace ; Blum, Michael J ; Quinn, Thomas P ; Heins, David C</creator><contributor>Britton, Robert</contributor><creatorcontrib>Sprehn, C Grace ; Blum, Michael J ; Quinn, Thomas P ; Heins, David C ; Britton, Robert</creatorcontrib><description>The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0122307</identifier><identifier>PMID: 25874710</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Admixtures ; Alaska ; Animal behavior ; Animals ; Aquatic birds ; Bayes Theorem ; Bayesian analysis ; Birds ; Cestoda - genetics ; Cestoda - pathogenicity ; Cestode Infections - genetics ; Cestode Infections - parasitology ; Copepoda ; Cytochrome ; Cytochrome oxidase I ; Cytochromes ; Deoxyribonucleic acid ; Dispersal ; DNA ; DNA, Mitochondrial - genetics ; Evolution ; Evolutionary biology ; Fish ; Gasterosteidae ; Gasterosteus aculeatus ; Gene flow ; Genetic diversity ; Genetic drift ; Genetic structure ; Genetic Variation ; Genetics ; Genotypes ; Haplotypes ; Host-parasite interactions ; Host-Parasite Interactions - genetics ; Hypotheses ; Lakes ; Landscape ; Life cycles ; Life history ; Mitochondrial DNA ; Nucleotide sequence ; Parasites ; Parasitology ; Pattern analysis ; Population genetics ; Population structure ; Schistocephalus solidus ; Smegmamorpha - parasitology</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0122307-e0122307</ispartof><rights>2015 Sprehn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Sprehn et al 2015 Sprehn et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-eecfdc0c5203d2c19c345a0fae40381a984c64f0b07ca692be0747764a1a91903</citedby><cites>FETCH-LOGICAL-c526t-eecfdc0c5203d2c19c345a0fae40381a984c64f0b07ca692be0747764a1a91903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395347/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395347/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25874710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Britton, Robert</contributor><creatorcontrib>Sprehn, C Grace</creatorcontrib><creatorcontrib>Blum, Michael J</creatorcontrib><creatorcontrib>Quinn, Thomas P</creatorcontrib><creatorcontrib>Heins, David C</creatorcontrib><title>Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.</description><subject>Adaptation</subject><subject>Admixtures</subject><subject>Alaska</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Aquatic birds</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Birds</subject><subject>Cestoda - genetics</subject><subject>Cestoda - pathogenicity</subject><subject>Cestode Infections - genetics</subject><subject>Cestode Infections - parasitology</subject><subject>Copepoda</subject><subject>Cytochrome</subject><subject>Cytochrome oxidase I</subject><subject>Cytochromes</subject><subject>Deoxyribonucleic acid</subject><subject>Dispersal</subject><subject>DNA</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Fish</subject><subject>Gasterosteidae</subject><subject>Gasterosteus aculeatus</subject><subject>Gene flow</subject><subject>Genetic diversity</subject><subject>Genetic drift</subject><subject>Genetic structure</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Host-parasite interactions</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Hypotheses</subject><subject>Lakes</subject><subject>Landscape</subject><subject>Life cycles</subject><subject>Life history</subject><subject>Mitochondrial DNA</subject><subject>Nucleotide sequence</subject><subject>Parasites</subject><subject>Parasitology</subject><subject>Pattern analysis</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Schistocephalus solidus</subject><subject>Smegmamorpha - parasitology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBCIlsI_QBCJSzns4q848QWpqqBUWokDcLZenJdd73rj4JdU4t_jdrdVi7j4-WNm_MaeonjL2ZLLmn_axjkNEJZjHHDJuBCS1c-KU26kWGjB5PNH85PiFdGWsUo2Wr8sTkTV1Krm7LS4WcHQkYMRyzUOOHlHZezLH27jaYoOxw2EmUqKwXe5jpCA_IRU-qGcNgmRRj9gSZm4C9iC25XnV0ATppiHzAA3B4Rppo9ln-K-vAhAO3hdvOghEL451rPi19cvPy-_LVbfr64vL1YLVwk9LRBd3zmWF0x2wnHjpKqA9YCKyYaDaZTTqmctqx1oI1pk2VetFeQzbpg8K94fdMcQyR6fjCzXteTcaCMz4vqA6CJs7Zj8HtIfG8Hbu42Y1hZSdhfQcte2jVINiFx01TS16IxGhNwrSBRZ6_PxtrndY-dwmBKEJ6JPTwa_set4Y5U0lVR1Fjg_CqT4e0aa7N6TwxBgwDjf9a20YczoDP3wD_T_7tQB5fJ_UML-oRnO7G2M7ln2Nkb2GKNMe_fYyAPpPjfyL-PMyDk</recordid><startdate>20150413</startdate><enddate>20150413</enddate><creator>Sprehn, C Grace</creator><creator>Blum, Michael J</creator><creator>Quinn, Thomas P</creator><creator>Heins, David C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150413</creationdate><title>Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska</title><author>Sprehn, C Grace ; Blum, Michael J ; Quinn, Thomas P ; Heins, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-eecfdc0c5203d2c19c345a0fae40381a984c64f0b07ca692be0747764a1a91903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation</topic><topic>Admixtures</topic><topic>Alaska</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Aquatic birds</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Birds</topic><topic>Cestoda - genetics</topic><topic>Cestoda - pathogenicity</topic><topic>Cestode Infections - genetics</topic><topic>Cestode Infections - parasitology</topic><topic>Copepoda</topic><topic>Cytochrome</topic><topic>Cytochrome oxidase I</topic><topic>Cytochromes</topic><topic>Deoxyribonucleic acid</topic><topic>Dispersal</topic><topic>DNA</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Fish</topic><topic>Gasterosteidae</topic><topic>Gasterosteus aculeatus</topic><topic>Gene flow</topic><topic>Genetic diversity</topic><topic>Genetic drift</topic><topic>Genetic structure</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Host-parasite interactions</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Hypotheses</topic><topic>Lakes</topic><topic>Landscape</topic><topic>Life cycles</topic><topic>Life history</topic><topic>Mitochondrial DNA</topic><topic>Nucleotide sequence</topic><topic>Parasites</topic><topic>Parasitology</topic><topic>Pattern analysis</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Schistocephalus solidus</topic><topic>Smegmamorpha - parasitology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprehn, C Grace</creatorcontrib><creatorcontrib>Blum, Michael J</creatorcontrib><creatorcontrib>Quinn, Thomas P</creatorcontrib><creatorcontrib>Heins, David C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprehn, C Grace</au><au>Blum, Michael J</au><au>Quinn, Thomas P</au><au>Heins, David C</au><au>Britton, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-13</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0122307</spage><epage>e0122307</epage><pages>e0122307-e0122307</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25874710</pmid><doi>10.1371/journal.pone.0122307</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-04, Vol.10 (4), p.e0122307-e0122307 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1673119693 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptation Admixtures Alaska Animal behavior Animals Aquatic birds Bayes Theorem Bayesian analysis Birds Cestoda - genetics Cestoda - pathogenicity Cestode Infections - genetics Cestode Infections - parasitology Copepoda Cytochrome Cytochrome oxidase I Cytochromes Deoxyribonucleic acid Dispersal DNA DNA, Mitochondrial - genetics Evolution Evolutionary biology Fish Gasterosteidae Gasterosteus aculeatus Gene flow Genetic diversity Genetic drift Genetic structure Genetic Variation Genetics Genotypes Haplotypes Host-parasite interactions Host-Parasite Interactions - genetics Hypotheses Lakes Landscape Life cycles Life history Mitochondrial DNA Nucleotide sequence Parasites Parasitology Pattern analysis Population genetics Population structure Schistocephalus solidus Smegmamorpha - parasitology |
title | Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landscape%20genetics%20of%20Schistocephalus%20solidus%20parasites%20in%20threespine%20stickleback%20(Gasterosteus%20aculeatus)%20from%20Alaska&rft.jtitle=PloS%20one&rft.au=Sprehn,%20C%20Grace&rft.date=2015-04-13&rft.volume=10&rft.issue=4&rft.spage=e0122307&rft.epage=e0122307&rft.pages=e0122307-e0122307&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0122307&rft_dat=%3Cproquest_plos_%3E1674690096%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673119693&rft_id=info:pmid/25874710&rft_doaj_id=oai_doaj_org_article_1cbb8448a2b84658872d96eea526a3e2&rfr_iscdi=true |