Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska

The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus refl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-04, Vol.10 (4), p.e0122307-e0122307
Hauptverfasser: Sprehn, C Grace, Blum, Michael J, Quinn, Thomas P, Heins, David C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0122307
container_issue 4
container_start_page e0122307
container_title PloS one
container_volume 10
creator Sprehn, C Grace
Blum, Michael J
Quinn, Thomas P
Heins, David C
description The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.
doi_str_mv 10.1371/journal.pone.0122307
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1673119693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1cbb8448a2b84658872d96eea526a3e2</doaj_id><sourcerecordid>1674690096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-eecfdc0c5203d2c19c345a0fae40381a984c64f0b07ca692be0747764a1a91903</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBCIlsI_QBCJSzns4q848QWpqqBUWokDcLZenJdd73rj4JdU4t_jdrdVi7j4-WNm_MaeonjL2ZLLmn_axjkNEJZjHHDJuBCS1c-KU26kWGjB5PNH85PiFdGWsUo2Wr8sTkTV1Krm7LS4WcHQkYMRyzUOOHlHZezLH27jaYoOxw2EmUqKwXe5jpCA_IRU-qGcNgmRRj9gSZm4C9iC25XnV0ATppiHzAA3B4Rppo9ln-K-vAhAO3hdvOghEL451rPi19cvPy-_LVbfr64vL1YLVwk9LRBd3zmWF0x2wnHjpKqA9YCKyYaDaZTTqmctqx1oI1pk2VetFeQzbpg8K94fdMcQyR6fjCzXteTcaCMz4vqA6CJs7Zj8HtIfG8Hbu42Y1hZSdhfQcte2jVINiFx01TS16IxGhNwrSBRZ6_PxtrndY-dwmBKEJ6JPTwa_set4Y5U0lVR1Fjg_CqT4e0aa7N6TwxBgwDjf9a20YczoDP3wD_T_7tQB5fJ_UML-oRnO7G2M7ln2Nkb2GKNMe_fYyAPpPjfyL-PMyDk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673119693</pqid></control><display><type>article</type><title>Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sprehn, C Grace ; Blum, Michael J ; Quinn, Thomas P ; Heins, David C</creator><contributor>Britton, Robert</contributor><creatorcontrib>Sprehn, C Grace ; Blum, Michael J ; Quinn, Thomas P ; Heins, David C ; Britton, Robert</creatorcontrib><description>The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0122307</identifier><identifier>PMID: 25874710</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Admixtures ; Alaska ; Animal behavior ; Animals ; Aquatic birds ; Bayes Theorem ; Bayesian analysis ; Birds ; Cestoda - genetics ; Cestoda - pathogenicity ; Cestode Infections - genetics ; Cestode Infections - parasitology ; Copepoda ; Cytochrome ; Cytochrome oxidase I ; Cytochromes ; Deoxyribonucleic acid ; Dispersal ; DNA ; DNA, Mitochondrial - genetics ; Evolution ; Evolutionary biology ; Fish ; Gasterosteidae ; Gasterosteus aculeatus ; Gene flow ; Genetic diversity ; Genetic drift ; Genetic structure ; Genetic Variation ; Genetics ; Genotypes ; Haplotypes ; Host-parasite interactions ; Host-Parasite Interactions - genetics ; Hypotheses ; Lakes ; Landscape ; Life cycles ; Life history ; Mitochondrial DNA ; Nucleotide sequence ; Parasites ; Parasitology ; Pattern analysis ; Population genetics ; Population structure ; Schistocephalus solidus ; Smegmamorpha - parasitology</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0122307-e0122307</ispartof><rights>2015 Sprehn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Sprehn et al 2015 Sprehn et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-eecfdc0c5203d2c19c345a0fae40381a984c64f0b07ca692be0747764a1a91903</citedby><cites>FETCH-LOGICAL-c526t-eecfdc0c5203d2c19c345a0fae40381a984c64f0b07ca692be0747764a1a91903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395347/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395347/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25874710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Britton, Robert</contributor><creatorcontrib>Sprehn, C Grace</creatorcontrib><creatorcontrib>Blum, Michael J</creatorcontrib><creatorcontrib>Quinn, Thomas P</creatorcontrib><creatorcontrib>Heins, David C</creatorcontrib><title>Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.</description><subject>Adaptation</subject><subject>Admixtures</subject><subject>Alaska</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Aquatic birds</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Birds</subject><subject>Cestoda - genetics</subject><subject>Cestoda - pathogenicity</subject><subject>Cestode Infections - genetics</subject><subject>Cestode Infections - parasitology</subject><subject>Copepoda</subject><subject>Cytochrome</subject><subject>Cytochrome oxidase I</subject><subject>Cytochromes</subject><subject>Deoxyribonucleic acid</subject><subject>Dispersal</subject><subject>DNA</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Fish</subject><subject>Gasterosteidae</subject><subject>Gasterosteus aculeatus</subject><subject>Gene flow</subject><subject>Genetic diversity</subject><subject>Genetic drift</subject><subject>Genetic structure</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Host-parasite interactions</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Hypotheses</subject><subject>Lakes</subject><subject>Landscape</subject><subject>Life cycles</subject><subject>Life history</subject><subject>Mitochondrial DNA</subject><subject>Nucleotide sequence</subject><subject>Parasites</subject><subject>Parasitology</subject><subject>Pattern analysis</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Schistocephalus solidus</subject><subject>Smegmamorpha - parasitology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBCIlsI_QBCJSzns4q848QWpqqBUWokDcLZenJdd73rj4JdU4t_jdrdVi7j4-WNm_MaeonjL2ZLLmn_axjkNEJZjHHDJuBCS1c-KU26kWGjB5PNH85PiFdGWsUo2Wr8sTkTV1Krm7LS4WcHQkYMRyzUOOHlHZezLH27jaYoOxw2EmUqKwXe5jpCA_IRU-qGcNgmRRj9gSZm4C9iC25XnV0ATppiHzAA3B4Rppo9ln-K-vAhAO3hdvOghEL451rPi19cvPy-_LVbfr64vL1YLVwk9LRBd3zmWF0x2wnHjpKqA9YCKyYaDaZTTqmctqx1oI1pk2VetFeQzbpg8K94fdMcQyR6fjCzXteTcaCMz4vqA6CJs7Zj8HtIfG8Hbu42Y1hZSdhfQcte2jVINiFx01TS16IxGhNwrSBRZ6_PxtrndY-dwmBKEJ6JPTwa_set4Y5U0lVR1Fjg_CqT4e0aa7N6TwxBgwDjf9a20YczoDP3wD_T_7tQB5fJ_UML-oRnO7G2M7ln2Nkb2GKNMe_fYyAPpPjfyL-PMyDk</recordid><startdate>20150413</startdate><enddate>20150413</enddate><creator>Sprehn, C Grace</creator><creator>Blum, Michael J</creator><creator>Quinn, Thomas P</creator><creator>Heins, David C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150413</creationdate><title>Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska</title><author>Sprehn, C Grace ; Blum, Michael J ; Quinn, Thomas P ; Heins, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-eecfdc0c5203d2c19c345a0fae40381a984c64f0b07ca692be0747764a1a91903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation</topic><topic>Admixtures</topic><topic>Alaska</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Aquatic birds</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Birds</topic><topic>Cestoda - genetics</topic><topic>Cestoda - pathogenicity</topic><topic>Cestode Infections - genetics</topic><topic>Cestode Infections - parasitology</topic><topic>Copepoda</topic><topic>Cytochrome</topic><topic>Cytochrome oxidase I</topic><topic>Cytochromes</topic><topic>Deoxyribonucleic acid</topic><topic>Dispersal</topic><topic>DNA</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Fish</topic><topic>Gasterosteidae</topic><topic>Gasterosteus aculeatus</topic><topic>Gene flow</topic><topic>Genetic diversity</topic><topic>Genetic drift</topic><topic>Genetic structure</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Host-parasite interactions</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Hypotheses</topic><topic>Lakes</topic><topic>Landscape</topic><topic>Life cycles</topic><topic>Life history</topic><topic>Mitochondrial DNA</topic><topic>Nucleotide sequence</topic><topic>Parasites</topic><topic>Parasitology</topic><topic>Pattern analysis</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Schistocephalus solidus</topic><topic>Smegmamorpha - parasitology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprehn, C Grace</creatorcontrib><creatorcontrib>Blum, Michael J</creatorcontrib><creatorcontrib>Quinn, Thomas P</creatorcontrib><creatorcontrib>Heins, David C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprehn, C Grace</au><au>Blum, Michael J</au><au>Quinn, Thomas P</au><au>Heins, David C</au><au>Britton, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-13</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0122307</spage><epage>e0122307</epage><pages>e0122307-e0122307</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25874710</pmid><doi>10.1371/journal.pone.0122307</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-04, Vol.10 (4), p.e0122307-e0122307
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1673119693
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptation
Admixtures
Alaska
Animal behavior
Animals
Aquatic birds
Bayes Theorem
Bayesian analysis
Birds
Cestoda - genetics
Cestoda - pathogenicity
Cestode Infections - genetics
Cestode Infections - parasitology
Copepoda
Cytochrome
Cytochrome oxidase I
Cytochromes
Deoxyribonucleic acid
Dispersal
DNA
DNA, Mitochondrial - genetics
Evolution
Evolutionary biology
Fish
Gasterosteidae
Gasterosteus aculeatus
Gene flow
Genetic diversity
Genetic drift
Genetic structure
Genetic Variation
Genetics
Genotypes
Haplotypes
Host-parasite interactions
Host-Parasite Interactions - genetics
Hypotheses
Lakes
Landscape
Life cycles
Life history
Mitochondrial DNA
Nucleotide sequence
Parasites
Parasitology
Pattern analysis
Population genetics
Population structure
Schistocephalus solidus
Smegmamorpha - parasitology
title Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landscape%20genetics%20of%20Schistocephalus%20solidus%20parasites%20in%20threespine%20stickleback%20(Gasterosteus%20aculeatus)%20from%20Alaska&rft.jtitle=PloS%20one&rft.au=Sprehn,%20C%20Grace&rft.date=2015-04-13&rft.volume=10&rft.issue=4&rft.spage=e0122307&rft.epage=e0122307&rft.pages=e0122307-e0122307&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0122307&rft_dat=%3Cproquest_plos_%3E1674690096%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673119693&rft_id=info:pmid/25874710&rft_doaj_id=oai_doaj_org_article_1cbb8448a2b84658872d96eea526a3e2&rfr_iscdi=true