Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling

The overproduction of mitochondrial reactive oxygen species (ROS) plays a key role in the pathogenesis of diabetic nephropathy (DN). However, the underlying molecular mechanism remains unclear. Our aim was to investigate the role of PGC-1α in the pathogenesis of DN. Rat glomerular mesangial cells (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-04, Vol.10 (4), p.e0125176-e0125176
Hauptverfasser: Guo, Kaifeng, Lu, Junxi, Huang, Yan, Wu, Mian, Zhang, Lei, Yu, Haoyong, Zhang, Mingliang, Bao, Yuqian, He, John Cijiang, Chen, Haibing, Jia, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0125176
container_issue 4
container_start_page e0125176
container_title PloS one
container_volume 10
creator Guo, Kaifeng
Lu, Junxi
Huang, Yan
Wu, Mian
Zhang, Lei
Yu, Haoyong
Zhang, Mingliang
Bao, Yuqian
He, John Cijiang
Chen, Haibing
Jia, Weiping
description The overproduction of mitochondrial reactive oxygen species (ROS) plays a key role in the pathogenesis of diabetic nephropathy (DN). However, the underlying molecular mechanism remains unclear. Our aim was to investigate the role of PGC-1α in the pathogenesis of DN. Rat glomerular mesangial cells (RMCs) were incubated in normal or high glucose medium with or without the PGC-1α-overexpressing plasmid (pcDNA3-PGC-1α) for 48 h. In the diabetic rats, decreased PGC-1α expression was associated with increased mitochondrial ROS generation in the renal cortex, increased proteinuria, glomerular hypertrophy, and higher glomerular 8-OHdG (a biomarker for oxidative stress). In vitro, hyperglycemia induced the downregulation of PGC-1α, which led to increased DRP1 expression, increased mitochondrial fragmentation and damaged network structure. This was associated with an increase in ROS generation and mesangial cell hypertrophy. These pathological changes were reversed in vitro by the transfection of pcDNA3-PGC-1α. These data suggest that PGC-1α may protect DN via the inhibition of DRP1-mediated mitochondrial dynamic remodeling and ROS production. These findings may assist the development of novel therapeutic strategies for patients with DN.
doi_str_mv 10.1371/journal.pone.0125176
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1671207898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cfedb2dc9739486b9702b22b609603fb</doaj_id><sourcerecordid>1672606877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-806f3e86f135a17e54db1bf464cd9151c9a5bb3dbd8aee8175196a56252954293</originalsourceid><addsrcrecordid>eNptkstuEzEUhkcIREvhDRBYYsMmwZexZ7xBQhGUSpVacVlbvpzJOJqxg-0UZd8X6ovwTEyatGoRK1vH__nOxX9VvSZ4TlhDPqziJgU9zNcxwBwTykkjnlTHRDI6ExSzpw_uR9WLnFcYc9YK8bw6orzlrJbsuLq-TLGALf4KUIoDoNihy9PFjPy5QT4g57WB4i0KsO5TXOvSb5HPSOccrdcFHPrtS49KD5O898YXH8MO8u3i-xRNcbPs0ehLtH0MLnk9ILcNepyQCcboYPBh-bJ61ukhw6vDeVL9_PL5x-Lr7Pzi9Gzx6XxmORVl1mLRMWhFRxjXpAFeO0NMV4vaOkk4sVJzY5gzrtUALWk4kUJzQTmVvKaSnVRv99z1ELM6LDArIhpCcdPKdlKc7RUu6pVaJz_qtFVRe3UbiGmpdJr2MYCyHThDnZUNk3UrjGwwNZQagaXArDMT6-Oh2saM4CyEkvTwCPr4JfheLeOVqpnE09dNgPcHQIq_NpCLGn22MAw6QNzc9k0FFm3TTNJ3_0j_P129V9kUc07Q3TdDsNqZ6i5L7UylDqaa0t48HOQ-6c5F7C-EUc0X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671207898</pqid></control><display><type>article</type><title>Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Guo, Kaifeng ; Lu, Junxi ; Huang, Yan ; Wu, Mian ; Zhang, Lei ; Yu, Haoyong ; Zhang, Mingliang ; Bao, Yuqian ; He, John Cijiang ; Chen, Haibing ; Jia, Weiping</creator><contributor>Ushio-Fukai, Masuko</contributor><creatorcontrib>Guo, Kaifeng ; Lu, Junxi ; Huang, Yan ; Wu, Mian ; Zhang, Lei ; Yu, Haoyong ; Zhang, Mingliang ; Bao, Yuqian ; He, John Cijiang ; Chen, Haibing ; Jia, Weiping ; Ushio-Fukai, Masuko</creatorcontrib><description>The overproduction of mitochondrial reactive oxygen species (ROS) plays a key role in the pathogenesis of diabetic nephropathy (DN). However, the underlying molecular mechanism remains unclear. Our aim was to investigate the role of PGC-1α in the pathogenesis of DN. Rat glomerular mesangial cells (RMCs) were incubated in normal or high glucose medium with or without the PGC-1α-overexpressing plasmid (pcDNA3-PGC-1α) for 48 h. In the diabetic rats, decreased PGC-1α expression was associated with increased mitochondrial ROS generation in the renal cortex, increased proteinuria, glomerular hypertrophy, and higher glomerular 8-OHdG (a biomarker for oxidative stress). In vitro, hyperglycemia induced the downregulation of PGC-1α, which led to increased DRP1 expression, increased mitochondrial fragmentation and damaged network structure. This was associated with an increase in ROS generation and mesangial cell hypertrophy. These pathological changes were reversed in vitro by the transfection of pcDNA3-PGC-1α. These data suggest that PGC-1α may protect DN via the inhibition of DRP1-mediated mitochondrial dynamic remodeling and ROS production. These findings may assist the development of novel therapeutic strategies for patients with DN.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0125176</identifier><identifier>PMID: 25853493</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>8-Hydroxy-2'-Deoxyguanosine ; 8-Hydroxydeoxyguanosine ; Animals ; Apoptosis ; Bioindicators ; Biomarkers ; Biomarkers - metabolism ; Biosynthesis ; Deoxyguanosine - analogs &amp; derivatives ; Deoxyguanosine - metabolism ; Diabetes ; Diabetes mellitus ; Diabetic Nephropathies - genetics ; Diabetic Nephropathies - metabolism ; Diabetic Nephropathies - pathology ; Diabetic nephropathy ; Dynamins - genetics ; Dynamins - metabolism ; Endocrinology ; Gene expression ; Gene Expression Regulation ; Glucose ; Glucose - metabolism ; Glucose - pharmacology ; Hospitals ; Humans ; Hyperglycemia ; Hyperglycemia - genetics ; Hyperglycemia - metabolism ; Hyperglycemia - pathology ; Hypertrophy ; Inhibition ; Kidneys ; Laboratory animals ; Male ; Mesangial cells ; Mesangial Cells - drug effects ; Mesangial Cells - metabolism ; Mesangial Cells - pathology ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Dynamics - drug effects ; Mitochondrial Dynamics - genetics ; Morphology ; Nephropathy ; Oxidative Stress ; Oxygen ; Pathogenesis ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Plasmids - chemistry ; Plasmids - metabolism ; Primary Cell Culture ; Proteins ; Proteinuria ; Rats ; Rats, Sprague-Dawley ; Reactive oxygen species ; Reactive Oxygen Species - antagonists &amp; inhibitors ; Reactive Oxygen Species - metabolism ; Renal cortex ; Rodents ; Signal Transduction ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transfection</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0125176-e0125176</ispartof><rights>2015 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Guo et al 2015 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-806f3e86f135a17e54db1bf464cd9151c9a5bb3dbd8aee8175196a56252954293</citedby><cites>FETCH-LOGICAL-c526t-806f3e86f135a17e54db1bf464cd9151c9a5bb3dbd8aee8175196a56252954293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390193/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390193/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25853493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ushio-Fukai, Masuko</contributor><creatorcontrib>Guo, Kaifeng</creatorcontrib><creatorcontrib>Lu, Junxi</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Wu, Mian</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yu, Haoyong</creatorcontrib><creatorcontrib>Zhang, Mingliang</creatorcontrib><creatorcontrib>Bao, Yuqian</creatorcontrib><creatorcontrib>He, John Cijiang</creatorcontrib><creatorcontrib>Chen, Haibing</creatorcontrib><creatorcontrib>Jia, Weiping</creatorcontrib><title>Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The overproduction of mitochondrial reactive oxygen species (ROS) plays a key role in the pathogenesis of diabetic nephropathy (DN). However, the underlying molecular mechanism remains unclear. Our aim was to investigate the role of PGC-1α in the pathogenesis of DN. Rat glomerular mesangial cells (RMCs) were incubated in normal or high glucose medium with or without the PGC-1α-overexpressing plasmid (pcDNA3-PGC-1α) for 48 h. In the diabetic rats, decreased PGC-1α expression was associated with increased mitochondrial ROS generation in the renal cortex, increased proteinuria, glomerular hypertrophy, and higher glomerular 8-OHdG (a biomarker for oxidative stress). In vitro, hyperglycemia induced the downregulation of PGC-1α, which led to increased DRP1 expression, increased mitochondrial fragmentation and damaged network structure. This was associated with an increase in ROS generation and mesangial cell hypertrophy. These pathological changes were reversed in vitro by the transfection of pcDNA3-PGC-1α. These data suggest that PGC-1α may protect DN via the inhibition of DRP1-mediated mitochondrial dynamic remodeling and ROS production. These findings may assist the development of novel therapeutic strategies for patients with DN.</description><subject>8-Hydroxy-2'-Deoxyguanosine</subject><subject>8-Hydroxydeoxyguanosine</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bioindicators</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Biosynthesis</subject><subject>Deoxyguanosine - analogs &amp; derivatives</subject><subject>Deoxyguanosine - metabolism</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic Nephropathies - genetics</subject><subject>Diabetic Nephropathies - metabolism</subject><subject>Diabetic Nephropathies - pathology</subject><subject>Diabetic nephropathy</subject><subject>Dynamins - genetics</subject><subject>Dynamins - metabolism</subject><subject>Endocrinology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - genetics</subject><subject>Hyperglycemia - metabolism</subject><subject>Hyperglycemia - pathology</subject><subject>Hypertrophy</subject><subject>Inhibition</subject><subject>Kidneys</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Mesangial cells</subject><subject>Mesangial Cells - drug effects</subject><subject>Mesangial Cells - metabolism</subject><subject>Mesangial Cells - pathology</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Dynamics - drug effects</subject><subject>Mitochondrial Dynamics - genetics</subject><subject>Morphology</subject><subject>Nephropathy</subject><subject>Oxidative Stress</subject><subject>Oxygen</subject><subject>Pathogenesis</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - metabolism</subject><subject>Primary Cell Culture</subject><subject>Proteins</subject><subject>Proteinuria</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - antagonists &amp; inhibitors</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Renal cortex</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transfection</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkstuEzEUhkcIREvhDRBYYsMmwZexZ7xBQhGUSpVacVlbvpzJOJqxg-0UZd8X6ovwTEyatGoRK1vH__nOxX9VvSZ4TlhDPqziJgU9zNcxwBwTykkjnlTHRDI6ExSzpw_uR9WLnFcYc9YK8bw6orzlrJbsuLq-TLGALf4KUIoDoNihy9PFjPy5QT4g57WB4i0KsO5TXOvSb5HPSOccrdcFHPrtS49KD5O898YXH8MO8u3i-xRNcbPs0ehLtH0MLnk9ILcNepyQCcboYPBh-bJ61ukhw6vDeVL9_PL5x-Lr7Pzi9Gzx6XxmORVl1mLRMWhFRxjXpAFeO0NMV4vaOkk4sVJzY5gzrtUALWk4kUJzQTmVvKaSnVRv99z1ELM6LDArIhpCcdPKdlKc7RUu6pVaJz_qtFVRe3UbiGmpdJr2MYCyHThDnZUNk3UrjGwwNZQagaXArDMT6-Oh2saM4CyEkvTwCPr4JfheLeOVqpnE09dNgPcHQIq_NpCLGn22MAw6QNzc9k0FFm3TTNJ3_0j_P129V9kUc07Q3TdDsNqZ6i5L7UylDqaa0t48HOQ-6c5F7C-EUc0X</recordid><startdate>20150408</startdate><enddate>20150408</enddate><creator>Guo, Kaifeng</creator><creator>Lu, Junxi</creator><creator>Huang, Yan</creator><creator>Wu, Mian</creator><creator>Zhang, Lei</creator><creator>Yu, Haoyong</creator><creator>Zhang, Mingliang</creator><creator>Bao, Yuqian</creator><creator>He, John Cijiang</creator><creator>Chen, Haibing</creator><creator>Jia, Weiping</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150408</creationdate><title>Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling</title><author>Guo, Kaifeng ; Lu, Junxi ; Huang, Yan ; Wu, Mian ; Zhang, Lei ; Yu, Haoyong ; Zhang, Mingliang ; Bao, Yuqian ; He, John Cijiang ; Chen, Haibing ; Jia, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-806f3e86f135a17e54db1bf464cd9151c9a5bb3dbd8aee8175196a56252954293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>8-Hydroxy-2'-Deoxyguanosine</topic><topic>8-Hydroxydeoxyguanosine</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bioindicators</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Biosynthesis</topic><topic>Deoxyguanosine - analogs &amp; derivatives</topic><topic>Deoxyguanosine - metabolism</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic Nephropathies - genetics</topic><topic>Diabetic Nephropathies - metabolism</topic><topic>Diabetic Nephropathies - pathology</topic><topic>Diabetic nephropathy</topic><topic>Dynamins - genetics</topic><topic>Dynamins - metabolism</topic><topic>Endocrinology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - genetics</topic><topic>Hyperglycemia - metabolism</topic><topic>Hyperglycemia - pathology</topic><topic>Hypertrophy</topic><topic>Inhibition</topic><topic>Kidneys</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Mesangial cells</topic><topic>Mesangial Cells - drug effects</topic><topic>Mesangial Cells - metabolism</topic><topic>Mesangial Cells - pathology</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Dynamics - drug effects</topic><topic>Mitochondrial Dynamics - genetics</topic><topic>Morphology</topic><topic>Nephropathy</topic><topic>Oxidative Stress</topic><topic>Oxygen</topic><topic>Pathogenesis</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - metabolism</topic><topic>Primary Cell Culture</topic><topic>Proteins</topic><topic>Proteinuria</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - antagonists &amp; inhibitors</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Renal cortex</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Kaifeng</creatorcontrib><creatorcontrib>Lu, Junxi</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Wu, Mian</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yu, Haoyong</creatorcontrib><creatorcontrib>Zhang, Mingliang</creatorcontrib><creatorcontrib>Bao, Yuqian</creatorcontrib><creatorcontrib>He, John Cijiang</creatorcontrib><creatorcontrib>Chen, Haibing</creatorcontrib><creatorcontrib>Jia, Weiping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Kaifeng</au><au>Lu, Junxi</au><au>Huang, Yan</au><au>Wu, Mian</au><au>Zhang, Lei</au><au>Yu, Haoyong</au><au>Zhang, Mingliang</au><au>Bao, Yuqian</au><au>He, John Cijiang</au><au>Chen, Haibing</au><au>Jia, Weiping</au><au>Ushio-Fukai, Masuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-08</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0125176</spage><epage>e0125176</epage><pages>e0125176-e0125176</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The overproduction of mitochondrial reactive oxygen species (ROS) plays a key role in the pathogenesis of diabetic nephropathy (DN). However, the underlying molecular mechanism remains unclear. Our aim was to investigate the role of PGC-1α in the pathogenesis of DN. Rat glomerular mesangial cells (RMCs) were incubated in normal or high glucose medium with or without the PGC-1α-overexpressing plasmid (pcDNA3-PGC-1α) for 48 h. In the diabetic rats, decreased PGC-1α expression was associated with increased mitochondrial ROS generation in the renal cortex, increased proteinuria, glomerular hypertrophy, and higher glomerular 8-OHdG (a biomarker for oxidative stress). In vitro, hyperglycemia induced the downregulation of PGC-1α, which led to increased DRP1 expression, increased mitochondrial fragmentation and damaged network structure. This was associated with an increase in ROS generation and mesangial cell hypertrophy. These pathological changes were reversed in vitro by the transfection of pcDNA3-PGC-1α. These data suggest that PGC-1α may protect DN via the inhibition of DRP1-mediated mitochondrial dynamic remodeling and ROS production. These findings may assist the development of novel therapeutic strategies for patients with DN.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25853493</pmid><doi>10.1371/journal.pone.0125176</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-04, Vol.10 (4), p.e0125176-e0125176
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1671207898
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 8-Hydroxy-2'-Deoxyguanosine
8-Hydroxydeoxyguanosine
Animals
Apoptosis
Bioindicators
Biomarkers
Biomarkers - metabolism
Biosynthesis
Deoxyguanosine - analogs & derivatives
Deoxyguanosine - metabolism
Diabetes
Diabetes mellitus
Diabetic Nephropathies - genetics
Diabetic Nephropathies - metabolism
Diabetic Nephropathies - pathology
Diabetic nephropathy
Dynamins - genetics
Dynamins - metabolism
Endocrinology
Gene expression
Gene Expression Regulation
Glucose
Glucose - metabolism
Glucose - pharmacology
Hospitals
Humans
Hyperglycemia
Hyperglycemia - genetics
Hyperglycemia - metabolism
Hyperglycemia - pathology
Hypertrophy
Inhibition
Kidneys
Laboratory animals
Male
Mesangial cells
Mesangial Cells - drug effects
Mesangial Cells - metabolism
Mesangial Cells - pathology
Metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Dynamics - drug effects
Mitochondrial Dynamics - genetics
Morphology
Nephropathy
Oxidative Stress
Oxygen
Pathogenesis
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Plasmids - chemistry
Plasmids - metabolism
Primary Cell Culture
Proteins
Proteinuria
Rats
Rats, Sprague-Dawley
Reactive oxygen species
Reactive Oxygen Species - antagonists & inhibitors
Reactive Oxygen Species - metabolism
Renal cortex
Rodents
Signal Transduction
Transcription Factors - genetics
Transcription Factors - metabolism
Transfection
title Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protective%20role%20of%20PGC-1%CE%B1%20in%20diabetic%20nephropathy%20is%20associated%20with%20the%20inhibition%20of%20ROS%20through%20mitochondrial%20dynamic%20remodeling&rft.jtitle=PloS%20one&rft.au=Guo,%20Kaifeng&rft.date=2015-04-08&rft.volume=10&rft.issue=4&rft.spage=e0125176&rft.epage=e0125176&rft.pages=e0125176-e0125176&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0125176&rft_dat=%3Cproquest_plos_%3E1672606877%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671207898&rft_id=info:pmid/25853493&rft_doaj_id=oai_doaj_org_article_cfedb2dc9739486b9702b22b609603fb&rfr_iscdi=true