Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.)
Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C1...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-04, Vol.10 (4), p.e0119454-e0119454 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0119454 |
---|---|
container_issue | 4 |
container_start_page | e0119454 |
container_title | PloS one |
container_volume | 10 |
creator | Wang, Ming Li Khera, Pawan Pandey, Manish K Wang, Hui Qiao, Lixian Feng, Suping Tonnis, Brandon Barkley, Noelle A Pinnow, David Holbrook, Corley C Culbreath, Albert K Varshney, Rajeev K Guo, Baozhu |
description | Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition. |
doi_str_mv | 10.1371/journal.pone.0119454 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1671014199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429778507</galeid><doaj_id>oai_doaj_org_article_1591c2f45e8543509ddaae7933aadc0d</doaj_id><sourcerecordid>A429778507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3530619b133f6474da5bac8088046089f8c971931293a6ab48fddb1eb4931d373</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggsIaHtosWOncS-QaomGJUqTcDg1jq1ncRTGofYGfRVeFqcNRst2gXKRazj7_-d8zsnSV4SPCe0IO-u3dC30Mw715o5JkSwjD1Kjomg6SxPMX28tz5Knnl_jXFGeZ4_TY7SjDOBeXqc_L4wrQlWoQ10nW0r5Er0-WrlkXJt6F3TjLUSQtgiUFZ71PXuxmqjkW29rerg4yI4FGqDqslqko5Wf5XIb9sIeRstINQ_YRuFqDPQDgGdLnpQddyqt52rwABazc-eJ09KaLx5Mb1Pkm8fP1ydf5qtLi-W54vVTOUiDTOaUZwTsSaUljkrmIZsDYpjzjHLMRclV6KISZBUUMhhzXip9ZqYNYs1TQt6krze-XaN83KK1UuSFwQTRoSIxHJHaAfXsuvtBvqtdGDlbcH1lYQ-dt4YSTJBVFqyzPCM0QwLrQFMISgF0Arr6PV-Om1Yb4xWJmYFzYHp4U5ra1m5G8ko5zlPo8HpZNC7H4PxQW6sV6ZpoDVuuP3uFAtMKYnom3_Qh7ubqApiA7YtXTxXjaZywVJRFDzDY0rzB6j4aLOx8cZNaWP9QHB2IBj_CvMrVDB4L5dfv_w_e_n9kH27x9YGmlB71wzButYfgmwHqt5535vyPmSC5ThCd2nIcYTkNEJR9mr_gu5FdzND_wCBcReG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671014199</pqid></control><display><type>article</type><title>Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Ming Li ; Khera, Pawan ; Pandey, Manish K ; Wang, Hui ; Qiao, Lixian ; Feng, Suping ; Tonnis, Brandon ; Barkley, Noelle A ; Pinnow, David ; Holbrook, Corley C ; Culbreath, Albert K ; Varshney, Rajeev K ; Guo, Baozhu</creator><contributor>Prasad, Manoj</contributor><creatorcontrib>Wang, Ming Li ; Khera, Pawan ; Pandey, Manish K ; Wang, Hui ; Qiao, Lixian ; Feng, Suping ; Tonnis, Brandon ; Barkley, Noelle A ; Pinnow, David ; Holbrook, Corley C ; Culbreath, Albert K ; Varshney, Rajeev K ; Guo, Baozhu ; Prasad, Manoj</creatorcontrib><description>Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0119454</identifier><identifier>PMID: 25849082</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural research ; Arabidopsis ; Arachis - genetics ; Arachis - growth & development ; Arachis - metabolism ; Arachis hypogaea ; Breeding ; Cardiovascular disease ; Cholesterol ; Chromosome Mapping - methods ; Chromosomes, Plant - genetics ; Composition ; Crop diseases ; Crops ; Edible oils ; Eicosanoic acid ; Epistasis ; Fatty acid composition ; Fatty Acid Desaturases - genetics ; Fatty acid synthesis ; Fatty acids ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Flavor ; Gene Expression Regulation ; Gene mapping ; Genetic control ; Genetic Linkage ; Genetics ; Genotype ; Genotypes ; Inbreeding ; Linoleic acid ; Mapping ; Microsatellite Repeats ; Monounsaturated fatty acids ; Oil ; Oils & fats ; Oleic acid ; Palmitic acid ; Peanut oil ; Peanuts ; Phenotype ; Phenotypic variations ; Plant pathology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Quantitative genetics ; Quantitative Trait Loci ; Registration ; Saturated fatty acids ; Seeds ; Shelf life ; Stearic acid ; Trans fats</subject><ispartof>PloS one, 2015-04, Vol.10 (4), p.e0119454-e0119454</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”) Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3530619b133f6474da5bac8088046089f8c971931293a6ab48fddb1eb4931d373</citedby><cites>FETCH-LOGICAL-c692t-3530619b133f6474da5bac8088046089f8c971931293a6ab48fddb1eb4931d373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388682/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388682/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25849082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Prasad, Manoj</contributor><creatorcontrib>Wang, Ming Li</creatorcontrib><creatorcontrib>Khera, Pawan</creatorcontrib><creatorcontrib>Pandey, Manish K</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Qiao, Lixian</creatorcontrib><creatorcontrib>Feng, Suping</creatorcontrib><creatorcontrib>Tonnis, Brandon</creatorcontrib><creatorcontrib>Barkley, Noelle A</creatorcontrib><creatorcontrib>Pinnow, David</creatorcontrib><creatorcontrib>Holbrook, Corley C</creatorcontrib><creatorcontrib>Culbreath, Albert K</creatorcontrib><creatorcontrib>Varshney, Rajeev K</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><title>Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.</description><subject>Agricultural research</subject><subject>Arabidopsis</subject><subject>Arachis - genetics</subject><subject>Arachis - growth & development</subject><subject>Arachis - metabolism</subject><subject>Arachis hypogaea</subject><subject>Breeding</subject><subject>Cardiovascular disease</subject><subject>Cholesterol</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes, Plant - genetics</subject><subject>Composition</subject><subject>Crop diseases</subject><subject>Crops</subject><subject>Edible oils</subject><subject>Eicosanoic acid</subject><subject>Epistasis</subject><subject>Fatty acid composition</subject><subject>Fatty Acid Desaturases - genetics</subject><subject>Fatty acid synthesis</subject><subject>Fatty acids</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Flavor</subject><subject>Gene Expression Regulation</subject><subject>Gene mapping</subject><subject>Genetic control</subject><subject>Genetic Linkage</subject><subject>Genetics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Inbreeding</subject><subject>Linoleic acid</subject><subject>Mapping</subject><subject>Microsatellite Repeats</subject><subject>Monounsaturated fatty acids</subject><subject>Oil</subject><subject>Oils & fats</subject><subject>Oleic acid</subject><subject>Palmitic acid</subject><subject>Peanut oil</subject><subject>Peanuts</subject><subject>Phenotype</subject><subject>Phenotypic variations</subject><subject>Plant pathology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Registration</subject><subject>Saturated fatty acids</subject><subject>Seeds</subject><subject>Shelf life</subject><subject>Stearic acid</subject><subject>Trans fats</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggsIaHtosWOncS-QaomGJUqTcDg1jq1ncRTGofYGfRVeFqcNRst2gXKRazj7_-d8zsnSV4SPCe0IO-u3dC30Mw715o5JkSwjD1Kjomg6SxPMX28tz5Knnl_jXFGeZ4_TY7SjDOBeXqc_L4wrQlWoQ10nW0r5Er0-WrlkXJt6F3TjLUSQtgiUFZ71PXuxmqjkW29rerg4yI4FGqDqslqko5Wf5XIb9sIeRstINQ_YRuFqDPQDgGdLnpQddyqt52rwABazc-eJ09KaLx5Mb1Pkm8fP1ydf5qtLi-W54vVTOUiDTOaUZwTsSaUljkrmIZsDYpjzjHLMRclV6KISZBUUMhhzXip9ZqYNYs1TQt6krze-XaN83KK1UuSFwQTRoSIxHJHaAfXsuvtBvqtdGDlbcH1lYQ-dt4YSTJBVFqyzPCM0QwLrQFMISgF0Arr6PV-Om1Yb4xWJmYFzYHp4U5ra1m5G8ko5zlPo8HpZNC7H4PxQW6sV6ZpoDVuuP3uFAtMKYnom3_Qh7ubqApiA7YtXTxXjaZywVJRFDzDY0rzB6j4aLOx8cZNaWP9QHB2IBj_CvMrVDB4L5dfv_w_e_n9kH27x9YGmlB71wzButYfgmwHqt5535vyPmSC5ThCd2nIcYTkNEJR9mr_gu5FdzND_wCBcReG</recordid><startdate>20150407</startdate><enddate>20150407</enddate><creator>Wang, Ming Li</creator><creator>Khera, Pawan</creator><creator>Pandey, Manish K</creator><creator>Wang, Hui</creator><creator>Qiao, Lixian</creator><creator>Feng, Suping</creator><creator>Tonnis, Brandon</creator><creator>Barkley, Noelle A</creator><creator>Pinnow, David</creator><creator>Holbrook, Corley C</creator><creator>Culbreath, Albert K</creator><creator>Varshney, Rajeev K</creator><creator>Guo, Baozhu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150407</creationdate><title>Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.)</title><author>Wang, Ming Li ; Khera, Pawan ; Pandey, Manish K ; Wang, Hui ; Qiao, Lixian ; Feng, Suping ; Tonnis, Brandon ; Barkley, Noelle A ; Pinnow, David ; Holbrook, Corley C ; Culbreath, Albert K ; Varshney, Rajeev K ; Guo, Baozhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3530619b133f6474da5bac8088046089f8c971931293a6ab48fddb1eb4931d373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agricultural research</topic><topic>Arabidopsis</topic><topic>Arachis - genetics</topic><topic>Arachis - growth & development</topic><topic>Arachis - metabolism</topic><topic>Arachis hypogaea</topic><topic>Breeding</topic><topic>Cardiovascular disease</topic><topic>Cholesterol</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes, Plant - genetics</topic><topic>Composition</topic><topic>Crop diseases</topic><topic>Crops</topic><topic>Edible oils</topic><topic>Eicosanoic acid</topic><topic>Epistasis</topic><topic>Fatty acid composition</topic><topic>Fatty Acid Desaturases - genetics</topic><topic>Fatty acid synthesis</topic><topic>Fatty acids</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Flavor</topic><topic>Gene Expression Regulation</topic><topic>Gene mapping</topic><topic>Genetic control</topic><topic>Genetic Linkage</topic><topic>Genetics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Inbreeding</topic><topic>Linoleic acid</topic><topic>Mapping</topic><topic>Microsatellite Repeats</topic><topic>Monounsaturated fatty acids</topic><topic>Oil</topic><topic>Oils & fats</topic><topic>Oleic acid</topic><topic>Palmitic acid</topic><topic>Peanut oil</topic><topic>Peanuts</topic><topic>Phenotype</topic><topic>Phenotypic variations</topic><topic>Plant pathology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Registration</topic><topic>Saturated fatty acids</topic><topic>Seeds</topic><topic>Shelf life</topic><topic>Stearic acid</topic><topic>Trans fats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ming Li</creatorcontrib><creatorcontrib>Khera, Pawan</creatorcontrib><creatorcontrib>Pandey, Manish K</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Qiao, Lixian</creatorcontrib><creatorcontrib>Feng, Suping</creatorcontrib><creatorcontrib>Tonnis, Brandon</creatorcontrib><creatorcontrib>Barkley, Noelle A</creatorcontrib><creatorcontrib>Pinnow, David</creatorcontrib><creatorcontrib>Holbrook, Corley C</creatorcontrib><creatorcontrib>Culbreath, Albert K</creatorcontrib><creatorcontrib>Varshney, Rajeev K</creatorcontrib><creatorcontrib>Guo, Baozhu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ming Li</au><au>Khera, Pawan</au><au>Pandey, Manish K</au><au>Wang, Hui</au><au>Qiao, Lixian</au><au>Feng, Suping</au><au>Tonnis, Brandon</au><au>Barkley, Noelle A</au><au>Pinnow, David</au><au>Holbrook, Corley C</au><au>Culbreath, Albert K</au><au>Varshney, Rajeev K</au><au>Guo, Baozhu</au><au>Prasad, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-04-07</date><risdate>2015</risdate><volume>10</volume><issue>4</issue><spage>e0119454</spage><epage>e0119454</epage><pages>e0119454-e0119454</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25849082</pmid><doi>10.1371/journal.pone.0119454</doi><tpages>e0119454</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-04, Vol.10 (4), p.e0119454-e0119454 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1671014199 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agricultural research Arabidopsis Arachis - genetics Arachis - growth & development Arachis - metabolism Arachis hypogaea Breeding Cardiovascular disease Cholesterol Chromosome Mapping - methods Chromosomes, Plant - genetics Composition Crop diseases Crops Edible oils Eicosanoic acid Epistasis Fatty acid composition Fatty Acid Desaturases - genetics Fatty acid synthesis Fatty acids Fatty Acids - genetics Fatty Acids - metabolism Flavor Gene Expression Regulation Gene mapping Genetic control Genetic Linkage Genetics Genotype Genotypes Inbreeding Linoleic acid Mapping Microsatellite Repeats Monounsaturated fatty acids Oil Oils & fats Oleic acid Palmitic acid Peanut oil Peanuts Phenotype Phenotypic variations Plant pathology Plant Proteins - genetics Plant Proteins - metabolism Quantitative genetics Quantitative Trait Loci Registration Saturated fatty acids Seeds Shelf life Stearic acid Trans fats |
title | Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20mapping%20of%20QTLs%20controlling%20fatty%20acids%20provided%20insights%20into%20the%20genetic%20control%20of%20fatty%20acid%20synthesis%20pathway%20in%20peanut%20(Arachis%20hypogaea%20L.)&rft.jtitle=PloS%20one&rft.au=Wang,%20Ming%20Li&rft.date=2015-04-07&rft.volume=10&rft.issue=4&rft.spage=e0119454&rft.epage=e0119454&rft.pages=e0119454-e0119454&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0119454&rft_dat=%3Cgale_plos_%3EA429778507%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671014199&rft_id=info:pmid/25849082&rft_galeid=A429778507&rft_doaj_id=oai_doaj_org_article_1591c2f45e8543509ddaae7933aadc0d&rfr_iscdi=true |