The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid

Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0122351-e0122351
Hauptverfasser: Hayashi, Maiko, Fukuhara, Hideo, Inoue, Keiji, Shuin, Taro, Hagiya, Yuichiro, Nakajima, Motowo, Tanaka, Tohru, Ogura, Shun-ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0122351
container_issue 3
container_start_page e0122351
container_title PloS one
container_volume 10
creator Hayashi, Maiko
Fukuhara, Hideo
Inoue, Keiji
Shuin, Taro
Hagiya, Yuichiro
Nakajima, Motowo
Tanaka, Tohru
Ogura, Shun-ichiro
description Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC) with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.
doi_str_mv 10.1371/journal.pone.0122351
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1667661476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A419036284</galeid><doaj_id>oai_doaj_org_article_fbbf326732fa442faea492714117a89b</doaj_id><sourcerecordid>A419036284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c736t-fd3b55c0144fc1bcfbc8eec224622f02118af1137c11b749b8964c308dd96a073</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7kW_gWhBEH2YMbemzYuwLF4GFhZ09UkIaZpMM2SabpKuO9_edKe7TGUfpG1azvmdf3pOzsmyVxAsIS7hx40bfCfssnedWgKIEC7gk-wYMowWFAH89OD7KDsJYQNAgStKn2dHqKgQYiU6zn5ftSpXWisZc6dz412Xm_SkOyZP6JU02kgTd6O7b110za4TWyNHvxf9Lv9jYpsXi2TrnFU3gzVd8gppmhfZMy1sUC-n92n288vnq_Nvi4vLr6vzs4uFLDGNC93guigkgIRoCWupa1kpJREiFCENEISV0DAlLSGsS8LqilEiMaiahlEBSnyavdnr9tYFPhUmcEhpSSkkJU3Eak80Tmx4781W-B13wvA7g_NrLnw00iqu61pjREuMtCAkLUoQhkpIICxFxeqk9Wnabai3qpGqi17Ymejc05mWr90NJ7hkoGJJ4P0k4N31oELkWxOkslZ0yg13_10hTBkgCX37D_p4dhO1FikB02mX9pWjKD8jkAFMUTVqLR-h0tWodJypi7RJ9lnAh1lAYqK6jWsxhMBXP77_P3v5a86-O2BbJWxsg7NDTI0X5iDZg9K7ELzSD0WGgI9DcF8NPg4Bn4Yghb0-PKCHoPuux38Ba1cBHQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667661476</pqid></control><display><type>article</type><title>The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Hayashi, Maiko ; Fukuhara, Hideo ; Inoue, Keiji ; Shuin, Taro ; Hagiya, Yuichiro ; Nakajima, Motowo ; Tanaka, Tohru ; Ogura, Shun-ichiro</creator><creatorcontrib>Hayashi, Maiko ; Fukuhara, Hideo ; Inoue, Keiji ; Shuin, Taro ; Hagiya, Yuichiro ; Nakajima, Motowo ; Tanaka, Tohru ; Ogura, Shun-ichiro</creatorcontrib><description>Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC) with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0122351</identifier><identifier>PMID: 25822972</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Acids ; Aminolevulinic acid ; Aminolevulinic Acid - pharmacology ; Biosynthesis ; Biotechnology ; Cancer ; Cancer therapies ; Cation Transport Proteins - metabolism ; Cell Line, Tumor ; Citric acid ; Glucose ; Health aspects ; Heme ; Heme - metabolism ; Humans ; Iron ; Iron - metabolism ; MCF-7 Cells ; Medical schools ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial DNA ; Photochemotherapy ; Photochemotherapy - methods ; Photodynamic therapy ; Photosensitizing Agents - pharmacology ; Physiological aspects ; Protoporphyrin ; Protoporphyrin IX ; Protoporphyrins - metabolism ; Sensitivity and Specificity ; Side effects ; Sodium ; Substrates ; Tumor cells ; Tumors ; Urology</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0122351-e0122351</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Hayashi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Hayashi et al 2015 Hayashi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c736t-fd3b55c0144fc1bcfbc8eec224622f02118af1137c11b749b8964c308dd96a073</citedby><cites>FETCH-LOGICAL-c736t-fd3b55c0144fc1bcfbc8eec224622f02118af1137c11b749b8964c308dd96a073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379089/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379089/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25822972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayashi, Maiko</creatorcontrib><creatorcontrib>Fukuhara, Hideo</creatorcontrib><creatorcontrib>Inoue, Keiji</creatorcontrib><creatorcontrib>Shuin, Taro</creatorcontrib><creatorcontrib>Hagiya, Yuichiro</creatorcontrib><creatorcontrib>Nakajima, Motowo</creatorcontrib><creatorcontrib>Tanaka, Tohru</creatorcontrib><creatorcontrib>Ogura, Shun-ichiro</creatorcontrib><title>The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC) with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.</description><subject>Accumulation</subject><subject>Acids</subject><subject>Aminolevulinic acid</subject><subject>Aminolevulinic Acid - pharmacology</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Citric acid</subject><subject>Glucose</subject><subject>Health aspects</subject><subject>Heme</subject><subject>Heme - metabolism</subject><subject>Humans</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>MCF-7 Cells</subject><subject>Medical schools</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Photochemotherapy</subject><subject>Photochemotherapy - methods</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - pharmacology</subject><subject>Physiological aspects</subject><subject>Protoporphyrin</subject><subject>Protoporphyrin IX</subject><subject>Protoporphyrins - metabolism</subject><subject>Sensitivity and Specificity</subject><subject>Side effects</subject><subject>Sodium</subject><subject>Substrates</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Urology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7kW_gWhBEH2YMbemzYuwLF4GFhZ09UkIaZpMM2SabpKuO9_edKe7TGUfpG1azvmdf3pOzsmyVxAsIS7hx40bfCfssnedWgKIEC7gk-wYMowWFAH89OD7KDsJYQNAgStKn2dHqKgQYiU6zn5ftSpXWisZc6dz412Xm_SkOyZP6JU02kgTd6O7b110za4TWyNHvxf9Lv9jYpsXi2TrnFU3gzVd8gppmhfZMy1sUC-n92n288vnq_Nvi4vLr6vzs4uFLDGNC93guigkgIRoCWupa1kpJREiFCENEISV0DAlLSGsS8LqilEiMaiahlEBSnyavdnr9tYFPhUmcEhpSSkkJU3Eak80Tmx4781W-B13wvA7g_NrLnw00iqu61pjREuMtCAkLUoQhkpIICxFxeqk9Wnabai3qpGqi17Ymejc05mWr90NJ7hkoGJJ4P0k4N31oELkWxOkslZ0yg13_10hTBkgCX37D_p4dhO1FikB02mX9pWjKD8jkAFMUTVqLR-h0tWodJypi7RJ9lnAh1lAYqK6jWsxhMBXP77_P3v5a86-O2BbJWxsg7NDTI0X5iDZg9K7ELzSD0WGgI9DcF8NPg4Bn4Yghb0-PKCHoPuux38Ba1cBHQ</recordid><startdate>20150330</startdate><enddate>20150330</enddate><creator>Hayashi, Maiko</creator><creator>Fukuhara, Hideo</creator><creator>Inoue, Keiji</creator><creator>Shuin, Taro</creator><creator>Hagiya, Yuichiro</creator><creator>Nakajima, Motowo</creator><creator>Tanaka, Tohru</creator><creator>Ogura, Shun-ichiro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150330</creationdate><title>The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid</title><author>Hayashi, Maiko ; Fukuhara, Hideo ; Inoue, Keiji ; Shuin, Taro ; Hagiya, Yuichiro ; Nakajima, Motowo ; Tanaka, Tohru ; Ogura, Shun-ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c736t-fd3b55c0144fc1bcfbc8eec224622f02118af1137c11b749b8964c308dd96a073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accumulation</topic><topic>Acids</topic><topic>Aminolevulinic acid</topic><topic>Aminolevulinic Acid - pharmacology</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Citric acid</topic><topic>Glucose</topic><topic>Health aspects</topic><topic>Heme</topic><topic>Heme - metabolism</topic><topic>Humans</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>MCF-7 Cells</topic><topic>Medical schools</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Photochemotherapy</topic><topic>Photochemotherapy - methods</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - pharmacology</topic><topic>Physiological aspects</topic><topic>Protoporphyrin</topic><topic>Protoporphyrin IX</topic><topic>Protoporphyrins - metabolism</topic><topic>Sensitivity and Specificity</topic><topic>Side effects</topic><topic>Sodium</topic><topic>Substrates</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Maiko</creatorcontrib><creatorcontrib>Fukuhara, Hideo</creatorcontrib><creatorcontrib>Inoue, Keiji</creatorcontrib><creatorcontrib>Shuin, Taro</creatorcontrib><creatorcontrib>Hagiya, Yuichiro</creatorcontrib><creatorcontrib>Nakajima, Motowo</creatorcontrib><creatorcontrib>Tanaka, Tohru</creatorcontrib><creatorcontrib>Ogura, Shun-ichiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Maiko</au><au>Fukuhara, Hideo</au><au>Inoue, Keiji</au><au>Shuin, Taro</au><au>Hagiya, Yuichiro</au><au>Nakajima, Motowo</au><au>Tanaka, Tohru</au><au>Ogura, Shun-ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-30</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0122351</spage><epage>e0122351</epage><pages>e0122351-e0122351</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC) with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25822972</pmid><doi>10.1371/journal.pone.0122351</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0122351-e0122351
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1667661476
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Accumulation
Acids
Aminolevulinic acid
Aminolevulinic Acid - pharmacology
Biosynthesis
Biotechnology
Cancer
Cancer therapies
Cation Transport Proteins - metabolism
Cell Line, Tumor
Citric acid
Glucose
Health aspects
Heme
Heme - metabolism
Humans
Iron
Iron - metabolism
MCF-7 Cells
Medical schools
Metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial DNA
Photochemotherapy
Photochemotherapy - methods
Photodynamic therapy
Photosensitizing Agents - pharmacology
Physiological aspects
Protoporphyrin
Protoporphyrin IX
Protoporphyrins - metabolism
Sensitivity and Specificity
Side effects
Sodium
Substrates
Tumor cells
Tumors
Urology
title The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20iron%20ion%20on%20the%20specificity%20of%20photodynamic%20therapy%20with%205-aminolevulinic%20acid&rft.jtitle=PloS%20one&rft.au=Hayashi,%20Maiko&rft.date=2015-03-30&rft.volume=10&rft.issue=3&rft.spage=e0122351&rft.epage=e0122351&rft.pages=e0122351-e0122351&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0122351&rft_dat=%3Cgale_plos_%3EA419036284%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667661476&rft_id=info:pmid/25822972&rft_galeid=A419036284&rft_doaj_id=oai_doaj_org_article_fbbf326732fa442faea492714117a89b&rfr_iscdi=true