A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox
High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present l...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-03, Vol.10 (3), p.e0122363-e0122363 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0122363 |
---|---|
container_issue | 3 |
container_start_page | e0122363 |
container_title | PloS one |
container_volume | 10 |
creator | Vállez Garcia, David Casteels, Cindy Schwarz, Adam J Dierckx, Rudi A J O Koole, Michel Doorduin, Janine |
description | High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p |
doi_str_mv | 10.1371/journal.pone.0122363 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1667654530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A419036316</galeid><doaj_id>oai_doaj_org_article_5548e0bcbfb849a9a5d65fc67bc3a028</doaj_id><sourcerecordid>A419036316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d00e9866b6d703a4f628e2c48388a81483cc2a100391db5c8e777de4d73ec0793</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYqPwBggsISG4aLHjxEm4QJqmAZUmbWKFW-vEPmk9JXGxnWnwCrw0ztpOLdoFyoVj-_d9yfmXJC8ZnTFesA_XdnA9tLO17XFGWZpywR8lx6zi6VSklD_eez9Knnl_TWnOSyGeJkdpXqY8bo-TPyfEB-g1OG1-oyYdhpXVpLGOhBUSZXsf3KCCsT2xDQkOFDri16hMYxS5PFuQqCZXl2enC-IgkNqB6UnAbt1CQP-R3EBrNNwZjKSJF9hhH2DnCSRY29b29nnypIHW44vtOkm-fz5bnH6dnl98mZ-enE-VqNIw1ZRiFeOohS4oh6wRaYmpykpellCyuCqVAqOUV0zXuSqxKAqNmS44KlpUfJK83viuW-vlNo9eMiEKkWc5p5GYbwht4VqunenA_ZIWjLw7sG4pwQWjWpR5npVIa1U3dZlVUEGuRd4oUdSKA03L6PVp-7Wh7lCrGLqD9sD08KY3K7m0NzLjRUXFaPBua-DszwF9kJ3xCtsWerTD3X_HapYsVneSvPkHfTi6LbWEGIDpGzuWdTSVJxmraGwkJiI1e4CKj8bOxL7AxsTzA8H7A0FkAt6GJQzey_nVt_9nL34csm_32BVCG1betsPYP_4QzDagctZ7h819khmV48zssiHHmZHbmYmyV_sFuhfthoT_Be9-Eeo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667654530</pqid></control><display><type>article</type><title>A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vállez Garcia, David ; Casteels, Cindy ; Schwarz, Adam J ; Dierckx, Rudi A J O ; Koole, Michel ; Doorduin, Janine</creator><contributor>Baron, Jean-Claude</contributor><creatorcontrib>Vállez Garcia, David ; Casteels, Cindy ; Schwarz, Adam J ; Dierckx, Rudi A J O ; Koole, Michel ; Doorduin, Janine ; Baron, Jean-Claude</creatorcontrib><description>High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001). Additionally, registration errors were smallest with strain-specific templates (p<0.05), and when images and templates had the same size (p ≤ 0.001). Moreover, highest registration errors were found for the focal lesion group (p<0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0122363</identifier><identifier>PMID: 25823005</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Automation ; Brain ; Brain - drug effects ; Brain - pathology ; Brain Mapping - methods ; Cameras ; Construction methods ; Construction standards ; Flumazenil ; Fluorine isotopes ; Fluorodeoxyglucose F18 - administration & dosage ; Image Processing, Computer-Assisted - methods ; Image resolution ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Metabolism ; Methods ; Multiple sclerosis ; Neuroimaging ; Nuclear medicine ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Raclopride ; Raclopride - administration & dosage ; Radioisotopes - administration & dosage ; Radiopharmaceuticals - administration & dosage ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar ; Rodents ; Single photon emission computed tomography ; Software ; Spatial discrimination ; Spatial resolution ; Studies ; Technetium Tc 99m Exametazime - administration & dosage ; Tomography ; Tomography, Emission-Computed, Single-Photon - methods ; Tracers ; Tracers (Biology)</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0122363-e0122363</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Vállez Garcia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Vállez Garcia et al 2015 Vállez Garcia et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d00e9866b6d703a4f628e2c48388a81483cc2a100391db5c8e777de4d73ec0793</citedby><cites>FETCH-LOGICAL-c692t-d00e9866b6d703a4f628e2c48388a81483cc2a100391db5c8e777de4d73ec0793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379068/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379068/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25823005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Baron, Jean-Claude</contributor><creatorcontrib>Vállez Garcia, David</creatorcontrib><creatorcontrib>Casteels, Cindy</creatorcontrib><creatorcontrib>Schwarz, Adam J</creatorcontrib><creatorcontrib>Dierckx, Rudi A J O</creatorcontrib><creatorcontrib>Koole, Michel</creatorcontrib><creatorcontrib>Doorduin, Janine</creatorcontrib><title>A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001). Additionally, registration errors were smallest with strain-specific templates (p<0.05), and when images and templates had the same size (p ≤ 0.001). Moreover, highest registration errors were found for the focal lesion group (p<0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].</description><subject>Animals</subject><subject>Automation</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - pathology</subject><subject>Brain Mapping - methods</subject><subject>Cameras</subject><subject>Construction methods</subject><subject>Construction standards</subject><subject>Flumazenil</subject><subject>Fluorine isotopes</subject><subject>Fluorodeoxyglucose F18 - administration & dosage</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image resolution</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Multiple sclerosis</subject><subject>Neuroimaging</subject><subject>Nuclear medicine</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Raclopride</subject><subject>Raclopride - administration & dosage</subject><subject>Radioisotopes - administration & dosage</subject><subject>Radiopharmaceuticals - administration & dosage</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Single photon emission computed tomography</subject><subject>Software</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Studies</subject><subject>Technetium Tc 99m Exametazime - administration & dosage</subject><subject>Tomography</subject><subject>Tomography, Emission-Computed, Single-Photon - methods</subject><subject>Tracers</subject><subject>Tracers (Biology)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYqPwBggsISG4aLHjxEm4QJqmAZUmbWKFW-vEPmk9JXGxnWnwCrw0ztpOLdoFyoVj-_d9yfmXJC8ZnTFesA_XdnA9tLO17XFGWZpywR8lx6zi6VSklD_eez9Knnl_TWnOSyGeJkdpXqY8bo-TPyfEB-g1OG1-oyYdhpXVpLGOhBUSZXsf3KCCsT2xDQkOFDri16hMYxS5PFuQqCZXl2enC-IgkNqB6UnAbt1CQP-R3EBrNNwZjKSJF9hhH2DnCSRY29b29nnypIHW44vtOkm-fz5bnH6dnl98mZ-enE-VqNIw1ZRiFeOohS4oh6wRaYmpykpellCyuCqVAqOUV0zXuSqxKAqNmS44KlpUfJK83viuW-vlNo9eMiEKkWc5p5GYbwht4VqunenA_ZIWjLw7sG4pwQWjWpR5npVIa1U3dZlVUEGuRd4oUdSKA03L6PVp-7Wh7lCrGLqD9sD08KY3K7m0NzLjRUXFaPBua-DszwF9kJ3xCtsWerTD3X_HapYsVneSvPkHfTi6LbWEGIDpGzuWdTSVJxmraGwkJiI1e4CKj8bOxL7AxsTzA8H7A0FkAt6GJQzey_nVt_9nL34csm_32BVCG1betsPYP_4QzDagctZ7h819khmV48zssiHHmZHbmYmyV_sFuhfthoT_Be9-Eeo</recordid><startdate>20150330</startdate><enddate>20150330</enddate><creator>Vállez Garcia, David</creator><creator>Casteels, Cindy</creator><creator>Schwarz, Adam J</creator><creator>Dierckx, Rudi A J O</creator><creator>Koole, Michel</creator><creator>Doorduin, Janine</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150330</creationdate><title>A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox</title><author>Vállez Garcia, David ; Casteels, Cindy ; Schwarz, Adam J ; Dierckx, Rudi A J O ; Koole, Michel ; Doorduin, Janine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d00e9866b6d703a4f628e2c48388a81483cc2a100391db5c8e777de4d73ec0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Automation</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - pathology</topic><topic>Brain Mapping - methods</topic><topic>Cameras</topic><topic>Construction methods</topic><topic>Construction standards</topic><topic>Flumazenil</topic><topic>Fluorine isotopes</topic><topic>Fluorodeoxyglucose F18 - administration & dosage</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image resolution</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Multiple sclerosis</topic><topic>Neuroimaging</topic><topic>Nuclear medicine</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Raclopride</topic><topic>Raclopride - administration & dosage</topic><topic>Radioisotopes - administration & dosage</topic><topic>Radiopharmaceuticals - administration & dosage</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Single photon emission computed tomography</topic><topic>Software</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Studies</topic><topic>Technetium Tc 99m Exametazime - administration & dosage</topic><topic>Tomography</topic><topic>Tomography, Emission-Computed, Single-Photon - methods</topic><topic>Tracers</topic><topic>Tracers (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vállez Garcia, David</creatorcontrib><creatorcontrib>Casteels, Cindy</creatorcontrib><creatorcontrib>Schwarz, Adam J</creatorcontrib><creatorcontrib>Dierckx, Rudi A J O</creatorcontrib><creatorcontrib>Koole, Michel</creatorcontrib><creatorcontrib>Doorduin, Janine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vállez Garcia, David</au><au>Casteels, Cindy</au><au>Schwarz, Adam J</au><au>Dierckx, Rudi A J O</au><au>Koole, Michel</au><au>Doorduin, Janine</au><au>Baron, Jean-Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-30</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0122363</spage><epage>e0122363</epage><pages>e0122363-e0122363</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001). Additionally, registration errors were smallest with strain-specific templates (p<0.05), and when images and templates had the same size (p ≤ 0.001). Moreover, highest registration errors were found for the focal lesion group (p<0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25823005</pmid><doi>10.1371/journal.pone.0122363</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-03, Vol.10 (3), p.e0122363-e0122363 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1667654530 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Automation Brain Brain - drug effects Brain - pathology Brain Mapping - methods Cameras Construction methods Construction standards Flumazenil Fluorine isotopes Fluorodeoxyglucose F18 - administration & dosage Image Processing, Computer-Assisted - methods Image resolution Magnetic Resonance Imaging Male Medical imaging Metabolism Methods Multiple sclerosis Neuroimaging Nuclear medicine Positron emission Positron emission tomography Positron-Emission Tomography - methods Raclopride Raclopride - administration & dosage Radioisotopes - administration & dosage Radiopharmaceuticals - administration & dosage Rats Rats, Sprague-Dawley Rats, Wistar Rodents Single photon emission computed tomography Software Spatial discrimination Spatial resolution Studies Technetium Tc 99m Exametazime - administration & dosage Tomography Tomography, Emission-Computed, Single-Photon - methods Tracers Tracers (Biology) |
title | A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20standardized%20method%20for%20the%20construction%20of%20tracer%20specific%20PET%20and%20SPECT%20rat%20brain%20templates:%20validation%20and%20implementation%20of%20a%20toolbox&rft.jtitle=PloS%20one&rft.au=V%C3%A1llez%20Garcia,%20David&rft.date=2015-03-30&rft.volume=10&rft.issue=3&rft.spage=e0122363&rft.epage=e0122363&rft.pages=e0122363-e0122363&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0122363&rft_dat=%3Cgale_plos_%3EA419036316%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667654530&rft_id=info:pmid/25823005&rft_galeid=A419036316&rft_doaj_id=oai_doaj_org_article_5548e0bcbfb849a9a5d65fc67bc3a028&rfr_iscdi=true |