Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1

In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0120291-e0120291
Hauptverfasser: Taulemesse, François, Le Gouis, Jacques, Gouache, David, Gibon, Yves, Allard, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0120291
container_issue 3
container_start_page e0120291
container_title PloS one
container_volume 10
creator Taulemesse, François
Le Gouis, Jacques
Gouache, David
Gibon, Yves
Allard, Vincent
description In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. Récital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO₃⁻) uptake under non-limiting NO₃⁻ conditions, while following the expression of key genes involved in NO₃⁻ uptake and assimilation. We found that post-flowering NO₃⁻ uptake was strongly influenced by plant N status at flowering during the first 300-400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO₃⁻ correlated well with the expression of the gene TaNRT2.1, coding for a root NO₃⁻ transporter, which seems to play a major role in post-flowering NO₃⁻ uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat.
doi_str_mv 10.1371/journal.pone.0120291
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1667180881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422548301</galeid><doaj_id>oai_doaj_org_article_c6cffd58b93a42fba64f3f6ecc23d8c8</doaj_id><sourcerecordid>A422548301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-519a18b6dd07cfa3b2f1b59e42a9be13b2c98f3c2eed9db2346c8e4a221f15ad3</originalsourceid><addsrcrecordid>eNqNU9Fu0zAUjRCIjcIfILA0CTGJlthOnOQFqZqAVao2NAavluNcty5pHGynY__AR-OsWdVOe0CRYufec861T-6Notc4nmCa4Y8r09lG1JPWNDCJMYlJgZ9Ex7igZMxITJ_u7Y-iF86t4jilOWPPoyOSZkXOSHIc_f1mnB-r2tyA1c0CNdpb4QF1rRe_AOkG3SxBeKQdkqbx1tQ1VKi8RRfIeeE7h0JyR_-AbrRfIoHaLiT1BtBarIxFgQbIqLAavysR3o1rjfVg0cXVNZngl9EzJWoHr4Z1FP348vn67Hw8v_w6O5vOxzIjzI9TXAicl6yq4kwqQUuicJkWkBBRlIDDtyxyRSUBqIqqJDRhModEEIIVTkVFR9HbrW5bG8cHIx3HjGU4j_McB8Rsi6iMWPHW6rWwt9wIze8Cxi64sF7LGrhkUqkqzcuCioSoUrBEUcVASkKrXOZB69NQrSvXUEkINor6QPQw0-glX5gNT2gWs6QIAqdbgeUD2vl0zvtYTBhlRZZu-oO_H4pZ87sD5_laOwl1LRow3d0dWTAxDa0wik4eQB93YkAtRLisbpQJZ5S9KJ8mhKRJTuMeNXkEFZ4K1jo0Digd4geE0wNC31zwxy9E5xyffb_6f-zlz0Psuz1saN3aL52pO69N4w6ByRYorXHOgto5i2PeD9i9G7wfMD4MWKC92f-ZO9L9RNF_5AUiIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667180881</pqid></control><display><type>article</type><title>Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Taulemesse, François ; Le Gouis, Jacques ; Gouache, David ; Gibon, Yves ; Allard, Vincent</creator><creatorcontrib>Taulemesse, François ; Le Gouis, Jacques ; Gouache, David ; Gibon, Yves ; Allard, Vincent</creatorcontrib><description>In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. Récital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO₃⁻) uptake under non-limiting NO₃⁻ conditions, while following the expression of key genes involved in NO₃⁻ uptake and assimilation. We found that post-flowering NO₃⁻ uptake was strongly influenced by plant N status at flowering during the first 300-400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO₃⁻ correlated well with the expression of the gene TaNRT2.1, coding for a root NO₃⁻ transporter, which seems to play a major role in post-flowering NO₃⁻ uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0120291</identifier><identifier>PMID: 25798624</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural production ; Anion Transport Proteins - genetics ; Anion Transport Proteins - metabolism ; Biological Transport ; Biomass ; Bread ; Controlled conditions ; Crop yield ; Degree-days ; Flowering ; Flowers - growth &amp; development ; Gene expression ; Gene Expression Regulation, Plant ; Genetic variability ; Genotypes ; Grain ; Hypotheses ; Knowledge bases (artificial intelligence) ; Life Sciences ; Nitrates ; Nitrates - metabolism ; Nitrogen ; Nitrogen - metabolism ; Oryza sativa ; Pascal, Blaise (1623-1662) ; Physiological aspects ; Physiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - metabolism ; Proteins ; Satiety ; Triticum - genetics ; Triticum - growth &amp; development ; Triticum - metabolism ; Triticum aestivum ; Vegetal Biology ; Wheat</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0120291-e0120291</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Taulemesse et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2015 Taulemesse et al 2015 Taulemesse et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-519a18b6dd07cfa3b2f1b59e42a9be13b2c98f3c2eed9db2346c8e4a221f15ad3</citedby><cites>FETCH-LOGICAL-c726t-519a18b6dd07cfa3b2f1b59e42a9be13b2c98f3c2eed9db2346c8e4a221f15ad3</cites><orcidid>0000-0001-5726-4902 ; 0000-0001-8161-1089 ; 0000-0003-1949-9158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370649/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370649/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25798624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02636975$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Taulemesse, François</creatorcontrib><creatorcontrib>Le Gouis, Jacques</creatorcontrib><creatorcontrib>Gouache, David</creatorcontrib><creatorcontrib>Gibon, Yves</creatorcontrib><creatorcontrib>Allard, Vincent</creatorcontrib><title>Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. Récital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO₃⁻) uptake under non-limiting NO₃⁻ conditions, while following the expression of key genes involved in NO₃⁻ uptake and assimilation. We found that post-flowering NO₃⁻ uptake was strongly influenced by plant N status at flowering during the first 300-400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO₃⁻ correlated well with the expression of the gene TaNRT2.1, coding for a root NO₃⁻ transporter, which seems to play a major role in post-flowering NO₃⁻ uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat.</description><subject>Agricultural production</subject><subject>Anion Transport Proteins - genetics</subject><subject>Anion Transport Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Biomass</subject><subject>Bread</subject><subject>Controlled conditions</subject><subject>Crop yield</subject><subject>Degree-days</subject><subject>Flowering</subject><subject>Flowers - growth &amp; development</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic variability</subject><subject>Genotypes</subject><subject>Grain</subject><subject>Hypotheses</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Life Sciences</subject><subject>Nitrates</subject><subject>Nitrates - metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Oryza sativa</subject><subject>Pascal, Blaise (1623-1662)</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - metabolism</subject><subject>Proteins</subject><subject>Satiety</subject><subject>Triticum - genetics</subject><subject>Triticum - growth &amp; development</subject><subject>Triticum - metabolism</subject><subject>Triticum aestivum</subject><subject>Vegetal Biology</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNU9Fu0zAUjRCIjcIfILA0CTGJlthOnOQFqZqAVao2NAavluNcty5pHGynY__AR-OsWdVOe0CRYufec861T-6Notc4nmCa4Y8r09lG1JPWNDCJMYlJgZ9Ex7igZMxITJ_u7Y-iF86t4jilOWPPoyOSZkXOSHIc_f1mnB-r2tyA1c0CNdpb4QF1rRe_AOkG3SxBeKQdkqbx1tQ1VKi8RRfIeeE7h0JyR_-AbrRfIoHaLiT1BtBarIxFgQbIqLAavysR3o1rjfVg0cXVNZngl9EzJWoHr4Z1FP348vn67Hw8v_w6O5vOxzIjzI9TXAicl6yq4kwqQUuicJkWkBBRlIDDtyxyRSUBqIqqJDRhModEEIIVTkVFR9HbrW5bG8cHIx3HjGU4j_McB8Rsi6iMWPHW6rWwt9wIze8Cxi64sF7LGrhkUqkqzcuCioSoUrBEUcVASkKrXOZB69NQrSvXUEkINor6QPQw0-glX5gNT2gWs6QIAqdbgeUD2vl0zvtYTBhlRZZu-oO_H4pZ87sD5_laOwl1LRow3d0dWTAxDa0wik4eQB93YkAtRLisbpQJZ5S9KJ8mhKRJTuMeNXkEFZ4K1jo0Digd4geE0wNC31zwxy9E5xyffb_6f-zlz0Psuz1saN3aL52pO69N4w6ByRYorXHOgto5i2PeD9i9G7wfMD4MWKC92f-ZO9L9RNF_5AUiIA</recordid><startdate>20150323</startdate><enddate>20150323</enddate><creator>Taulemesse, François</creator><creator>Le Gouis, Jacques</creator><creator>Gouache, David</creator><creator>Gibon, Yves</creator><creator>Allard, Vincent</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5726-4902</orcidid><orcidid>https://orcid.org/0000-0001-8161-1089</orcidid><orcidid>https://orcid.org/0000-0003-1949-9158</orcidid></search><sort><creationdate>20150323</creationdate><title>Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1</title><author>Taulemesse, François ; Le Gouis, Jacques ; Gouache, David ; Gibon, Yves ; Allard, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-519a18b6dd07cfa3b2f1b59e42a9be13b2c98f3c2eed9db2346c8e4a221f15ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agricultural production</topic><topic>Anion Transport Proteins - genetics</topic><topic>Anion Transport Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Biomass</topic><topic>Bread</topic><topic>Controlled conditions</topic><topic>Crop yield</topic><topic>Degree-days</topic><topic>Flowering</topic><topic>Flowers - growth &amp; development</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic variability</topic><topic>Genotypes</topic><topic>Grain</topic><topic>Hypotheses</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Life Sciences</topic><topic>Nitrates</topic><topic>Nitrates - metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Oryza sativa</topic><topic>Pascal, Blaise (1623-1662)</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - metabolism</topic><topic>Proteins</topic><topic>Satiety</topic><topic>Triticum - genetics</topic><topic>Triticum - growth &amp; development</topic><topic>Triticum - metabolism</topic><topic>Triticum aestivum</topic><topic>Vegetal Biology</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taulemesse, François</creatorcontrib><creatorcontrib>Le Gouis, Jacques</creatorcontrib><creatorcontrib>Gouache, David</creatorcontrib><creatorcontrib>Gibon, Yves</creatorcontrib><creatorcontrib>Allard, Vincent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taulemesse, François</au><au>Le Gouis, Jacques</au><au>Gouache, David</au><au>Gibon, Yves</au><au>Allard, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-23</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0120291</spage><epage>e0120291</epage><pages>e0120291-e0120291</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. Récital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO₃⁻) uptake under non-limiting NO₃⁻ conditions, while following the expression of key genes involved in NO₃⁻ uptake and assimilation. We found that post-flowering NO₃⁻ uptake was strongly influenced by plant N status at flowering during the first 300-400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO₃⁻ correlated well with the expression of the gene TaNRT2.1, coding for a root NO₃⁻ transporter, which seems to play a major role in post-flowering NO₃⁻ uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25798624</pmid><doi>10.1371/journal.pone.0120291</doi><orcidid>https://orcid.org/0000-0001-5726-4902</orcidid><orcidid>https://orcid.org/0000-0001-8161-1089</orcidid><orcidid>https://orcid.org/0000-0003-1949-9158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0120291-e0120291
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1667180881
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Agricultural production
Anion Transport Proteins - genetics
Anion Transport Proteins - metabolism
Biological Transport
Biomass
Bread
Controlled conditions
Crop yield
Degree-days
Flowering
Flowers - growth & development
Gene expression
Gene Expression Regulation, Plant
Genetic variability
Genotypes
Grain
Hypotheses
Knowledge bases (artificial intelligence)
Life Sciences
Nitrates
Nitrates - metabolism
Nitrogen
Nitrogen - metabolism
Oryza sativa
Pascal, Blaise (1623-1662)
Physiological aspects
Physiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - metabolism
Proteins
Satiety
Triticum - genetics
Triticum - growth & development
Triticum - metabolism
Triticum aestivum
Vegetal Biology
Wheat
title Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-flowering%20nitrate%20uptake%20in%20wheat%20is%20controlled%20by%20N%20status%20at%20flowering,%20with%20a%20putative%20major%20role%20of%20root%20nitrate%20transporter%20NRT2.1&rft.jtitle=PloS%20one&rft.au=Taulemesse,%20Fran%C3%A7ois&rft.date=2015-03-23&rft.volume=10&rft.issue=3&rft.spage=e0120291&rft.epage=e0120291&rft.pages=e0120291-e0120291&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0120291&rft_dat=%3Cgale_plos_%3EA422548301%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667180881&rft_id=info:pmid/25798624&rft_galeid=A422548301&rft_doaj_id=oai_doaj_org_article_c6cffd58b93a42fba64f3f6ecc23d8c8&rfr_iscdi=true