MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1

A critical mechanism in atrial fibrillation (AF) is cardiac autonomic nerve remodeling (ANR). MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Numerous miRNAs are involved in diseases of the nervous and cardiovascular systems. We aimed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0122674-e0122674
Hauptverfasser: Zhang, Yujiao, Zheng, Shaohua, Geng, Yangyang, Xue, Jiao, Wang, Zhongsu, Xie, Xinxing, Wang, Jiangrong, Zhang, Shuyu, Hou, Yinglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0122674
container_issue 3
container_start_page e0122674
container_title PloS one
container_volume 10
creator Zhang, Yujiao
Zheng, Shaohua
Geng, Yangyang
Xue, Jiao
Wang, Zhongsu
Xie, Xinxing
Wang, Jiangrong
Zhang, Shuyu
Hou, Yinglong
description A critical mechanism in atrial fibrillation (AF) is cardiac autonomic nerve remodeling (ANR). MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Numerous miRNAs are involved in diseases of the nervous and cardiovascular systems. We aimed to assess the underlying role of miRNAs in regulating cardiac ANR in AF by right atrial tachypacing (A-TP) in canines. Following 4-week A-TP, the superior left ganglionated plexuses (SLGPs), which are embedded in the fat pads of the left atrium, were subjected to miRNA expression profiling to screen preferentially expressed miRNAs. Sixteen miRNAs showed significantly differential expression between the control and A-TP groups, including miR-206, miR-203, miR-224 and miR-137. In particular, we focused on miR-206, which was elevated ~10-fold in A-TP dogs. Forced expression of miR-206 through lentiviral infection based on A-TP in vivo significantly shortened the atrial effective refractory period (AERP) (81 ± 7 vs. 98 ± 7 ms, P < 0.05). Immunohistochemical analysis showed that the regeneration of nerves increased more than 2-fold by miR-206 overexpression (P < 0.01). The expression of superoxide dismutase 1 (SOD1) was repressed by miR-206 overexpression by Western blot and luciferase assay, indicative of SOD1 as a direct target of miR-206. Overexpression of miR-206 increased reactive oxygen species (ROS) levels in vitro and in vivo, whereas miR-206 silencing attenuated irradiation- or A-TP-induced ROS. Knockdown of SOD1 effectively abolished ROS reduction caused by miR-206 silencing. Our results found the differential expression of miRNAs in response to ANR in AF and elucidated the important role of miR-206 by targeting SOD1. The study illustrated the novel molecular mechanism of ANR and indicated a potential therapeutic target for AF.
doi_str_mv 10.1371/journal.pone.0122674
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1667159218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A421800726</galeid><doaj_id>oai_doaj_org_article_ba760736195741368f271eb527b3b1a5</doaj_id><sourcerecordid>A421800726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-1dcd5881bea649435f37a5c07fd0bb354efa816aaecc021fefedad4858162863</originalsourceid><addsrcrecordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OJLbCc8IFXjVmlQqZt4tRznJPWU2p2dTOwT8LVx1mxq0B5QHhL7_M7_5NyS5CVGc0wF_nDpem9VO985C3OECeEie5Qc44KSGSeIPj74PkqehXCJEKM550-TI8JyzEmeHSd_fhjt3frnIt15V5vW2CZ1dao6b1Sb1qb0pm1VZ5xNjU21ssZC-JhuzXpGEE-3ruqjGUK0RhcbjI6Qr4zSqeo7Z9023ljw15B6iDTcRihv4qkZPIfT-eozfp48qVUb4MX4Pkkuvn65OP0-O1t9W54uzmZasLyb4UpXLM9xCYpnRUZZTYViGom6QmVJWQa1iqkpBVojgmuooVJVlu_z5fQkeb2X3bUuyLGEQWLOBWYFwXkklnuicupS7rzZKn8jnTLy9sL5RirfGd2CLJXgSFCOCyYyTHleE4GhZESUtMSKRa1PY7S-3EKlIdZItRPRqcWajWzctcyo4AVDUeDdKODdVQ-hk1sTNMSOWHD9_r8LzjKGI_rmH_Th7EaqUTEBY2sX4-pBVC6yCCAkyFCl-QNUfCqI7YzzFgcFpg7vJw6R6eB316g-BLk8X_8_u_o1Zd8esBtQbbcJru2HeQxTMNuDcZhD8FDfFxkjOazLXTXksC5yXJfo9uqwQfdOd_tB_wIIVxBY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667159218</pqid></control><display><type>article</type><title>MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Zhang, Yujiao ; Zheng, Shaohua ; Geng, Yangyang ; Xue, Jiao ; Wang, Zhongsu ; Xie, Xinxing ; Wang, Jiangrong ; Zhang, Shuyu ; Hou, Yinglong</creator><contributor>Gupta, Sudhiranjan</contributor><creatorcontrib>Zhang, Yujiao ; Zheng, Shaohua ; Geng, Yangyang ; Xue, Jiao ; Wang, Zhongsu ; Xie, Xinxing ; Wang, Jiangrong ; Zhang, Shuyu ; Hou, Yinglong ; Gupta, Sudhiranjan</creatorcontrib><description>A critical mechanism in atrial fibrillation (AF) is cardiac autonomic nerve remodeling (ANR). MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Numerous miRNAs are involved in diseases of the nervous and cardiovascular systems. We aimed to assess the underlying role of miRNAs in regulating cardiac ANR in AF by right atrial tachypacing (A-TP) in canines. Following 4-week A-TP, the superior left ganglionated plexuses (SLGPs), which are embedded in the fat pads of the left atrium, were subjected to miRNA expression profiling to screen preferentially expressed miRNAs. Sixteen miRNAs showed significantly differential expression between the control and A-TP groups, including miR-206, miR-203, miR-224 and miR-137. In particular, we focused on miR-206, which was elevated ~10-fold in A-TP dogs. Forced expression of miR-206 through lentiviral infection based on A-TP in vivo significantly shortened the atrial effective refractory period (AERP) (81 ± 7 vs. 98 ± 7 ms, P &lt; 0.05). Immunohistochemical analysis showed that the regeneration of nerves increased more than 2-fold by miR-206 overexpression (P &lt; 0.01). The expression of superoxide dismutase 1 (SOD1) was repressed by miR-206 overexpression by Western blot and luciferase assay, indicative of SOD1 as a direct target of miR-206. Overexpression of miR-206 increased reactive oxygen species (ROS) levels in vitro and in vivo, whereas miR-206 silencing attenuated irradiation- or A-TP-induced ROS. Knockdown of SOD1 effectively abolished ROS reduction caused by miR-206 silencing. Our results found the differential expression of miRNAs in response to ANR in AF and elucidated the important role of miR-206 by targeting SOD1. The study illustrated the novel molecular mechanism of ANR and indicated a potential therapeutic target for AF.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0122674</identifier><identifier>PMID: 25816284</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Atrial fibrillation ; Atrial Fibrillation - genetics ; Atrial Fibrillation - physiopathology ; Atrial Fibrillation - veterinary ; Atrium ; Autonomic Pathways - physiopathology ; Cardiac arrhythmia ; Cardiology ; Cells, Cultured ; Collaboration ; Dog Diseases - genetics ; Dog Diseases - physiopathology ; Dogs ; Fibrillation ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation ; Genomes ; Health aspects ; Heart ; Heart diseases ; Higher education ; Hospitals ; Irradiation ; Laboratory animals ; Medicine ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Molecular chains ; Nerves ; Oxidative stress ; Oxygen ; Pathogenesis ; Post-transcription ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Refractory period ; Regeneration ; Ribonucleic acid ; RNA ; Superoxide dismutase ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxide Dismutase-1 ; Superoxides ; Therapeutic applications</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0122674-e0122674</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Zhang et al 2015 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-1dcd5881bea649435f37a5c07fd0bb354efa816aaecc021fefedad4858162863</citedby><cites>FETCH-LOGICAL-c758t-1dcd5881bea649435f37a5c07fd0bb354efa816aaecc021fefedad4858162863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376950/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376950/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25816284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gupta, Sudhiranjan</contributor><creatorcontrib>Zhang, Yujiao</creatorcontrib><creatorcontrib>Zheng, Shaohua</creatorcontrib><creatorcontrib>Geng, Yangyang</creatorcontrib><creatorcontrib>Xue, Jiao</creatorcontrib><creatorcontrib>Wang, Zhongsu</creatorcontrib><creatorcontrib>Xie, Xinxing</creatorcontrib><creatorcontrib>Wang, Jiangrong</creatorcontrib><creatorcontrib>Zhang, Shuyu</creatorcontrib><creatorcontrib>Hou, Yinglong</creatorcontrib><title>MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A critical mechanism in atrial fibrillation (AF) is cardiac autonomic nerve remodeling (ANR). MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Numerous miRNAs are involved in diseases of the nervous and cardiovascular systems. We aimed to assess the underlying role of miRNAs in regulating cardiac ANR in AF by right atrial tachypacing (A-TP) in canines. Following 4-week A-TP, the superior left ganglionated plexuses (SLGPs), which are embedded in the fat pads of the left atrium, were subjected to miRNA expression profiling to screen preferentially expressed miRNAs. Sixteen miRNAs showed significantly differential expression between the control and A-TP groups, including miR-206, miR-203, miR-224 and miR-137. In particular, we focused on miR-206, which was elevated ~10-fold in A-TP dogs. Forced expression of miR-206 through lentiviral infection based on A-TP in vivo significantly shortened the atrial effective refractory period (AERP) (81 ± 7 vs. 98 ± 7 ms, P &lt; 0.05). Immunohistochemical analysis showed that the regeneration of nerves increased more than 2-fold by miR-206 overexpression (P &lt; 0.01). The expression of superoxide dismutase 1 (SOD1) was repressed by miR-206 overexpression by Western blot and luciferase assay, indicative of SOD1 as a direct target of miR-206. Overexpression of miR-206 increased reactive oxygen species (ROS) levels in vitro and in vivo, whereas miR-206 silencing attenuated irradiation- or A-TP-induced ROS. Knockdown of SOD1 effectively abolished ROS reduction caused by miR-206 silencing. Our results found the differential expression of miRNAs in response to ANR in AF and elucidated the important role of miR-206 by targeting SOD1. The study illustrated the novel molecular mechanism of ANR and indicated a potential therapeutic target for AF.</description><subject>Analysis</subject><subject>Animals</subject><subject>Atrial fibrillation</subject><subject>Atrial Fibrillation - genetics</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>Atrial Fibrillation - veterinary</subject><subject>Atrium</subject><subject>Autonomic Pathways - physiopathology</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Cells, Cultured</subject><subject>Collaboration</subject><subject>Dog Diseases - genetics</subject><subject>Dog Diseases - physiopathology</subject><subject>Dogs</subject><subject>Fibrillation</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Higher education</subject><subject>Hospitals</subject><subject>Irradiation</subject><subject>Laboratory animals</subject><subject>Medicine</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Molecular chains</subject><subject>Nerves</subject><subject>Oxidative stress</subject><subject>Oxygen</subject><subject>Pathogenesis</subject><subject>Post-transcription</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Refractory period</subject><subject>Regeneration</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxide Dismutase-1</subject><subject>Superoxides</subject><subject>Therapeutic applications</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OJLbCc8IFXjVmlQqZt4tRznJPWU2p2dTOwT8LVx1mxq0B5QHhL7_M7_5NyS5CVGc0wF_nDpem9VO985C3OECeEie5Qc44KSGSeIPj74PkqehXCJEKM550-TI8JyzEmeHSd_fhjt3frnIt15V5vW2CZ1dao6b1Sb1qb0pm1VZ5xNjU21ssZC-JhuzXpGEE-3ruqjGUK0RhcbjI6Qr4zSqeo7Z9023ljw15B6iDTcRihv4qkZPIfT-eozfp48qVUb4MX4Pkkuvn65OP0-O1t9W54uzmZasLyb4UpXLM9xCYpnRUZZTYViGom6QmVJWQa1iqkpBVojgmuooVJVlu_z5fQkeb2X3bUuyLGEQWLOBWYFwXkklnuicupS7rzZKn8jnTLy9sL5RirfGd2CLJXgSFCOCyYyTHleE4GhZESUtMSKRa1PY7S-3EKlIdZItRPRqcWajWzctcyo4AVDUeDdKODdVQ-hk1sTNMSOWHD9_r8LzjKGI_rmH_Th7EaqUTEBY2sX4-pBVC6yCCAkyFCl-QNUfCqI7YzzFgcFpg7vJw6R6eB316g-BLk8X_8_u_o1Zd8esBtQbbcJru2HeQxTMNuDcZhD8FDfFxkjOazLXTXksC5yXJfo9uqwQfdOd_tB_wIIVxBY</recordid><startdate>20150327</startdate><enddate>20150327</enddate><creator>Zhang, Yujiao</creator><creator>Zheng, Shaohua</creator><creator>Geng, Yangyang</creator><creator>Xue, Jiao</creator><creator>Wang, Zhongsu</creator><creator>Xie, Xinxing</creator><creator>Wang, Jiangrong</creator><creator>Zhang, Shuyu</creator><creator>Hou, Yinglong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150327</creationdate><title>MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1</title><author>Zhang, Yujiao ; Zheng, Shaohua ; Geng, Yangyang ; Xue, Jiao ; Wang, Zhongsu ; Xie, Xinxing ; Wang, Jiangrong ; Zhang, Shuyu ; Hou, Yinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-1dcd5881bea649435f37a5c07fd0bb354efa816aaecc021fefedad4858162863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Atrial fibrillation</topic><topic>Atrial Fibrillation - genetics</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>Atrial Fibrillation - veterinary</topic><topic>Atrium</topic><topic>Autonomic Pathways - physiopathology</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Cells, Cultured</topic><topic>Collaboration</topic><topic>Dog Diseases - genetics</topic><topic>Dog Diseases - physiopathology</topic><topic>Dogs</topic><topic>Fibrillation</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Higher education</topic><topic>Hospitals</topic><topic>Irradiation</topic><topic>Laboratory animals</topic><topic>Medicine</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Molecular chains</topic><topic>Nerves</topic><topic>Oxidative stress</topic><topic>Oxygen</topic><topic>Pathogenesis</topic><topic>Post-transcription</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Refractory period</topic><topic>Regeneration</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxide Dismutase-1</topic><topic>Superoxides</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yujiao</creatorcontrib><creatorcontrib>Zheng, Shaohua</creatorcontrib><creatorcontrib>Geng, Yangyang</creatorcontrib><creatorcontrib>Xue, Jiao</creatorcontrib><creatorcontrib>Wang, Zhongsu</creatorcontrib><creatorcontrib>Xie, Xinxing</creatorcontrib><creatorcontrib>Wang, Jiangrong</creatorcontrib><creatorcontrib>Zhang, Shuyu</creatorcontrib><creatorcontrib>Hou, Yinglong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yujiao</au><au>Zheng, Shaohua</au><au>Geng, Yangyang</au><au>Xue, Jiao</au><au>Wang, Zhongsu</au><au>Xie, Xinxing</au><au>Wang, Jiangrong</au><au>Zhang, Shuyu</au><au>Hou, Yinglong</au><au>Gupta, Sudhiranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-27</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0122674</spage><epage>e0122674</epage><pages>e0122674-e0122674</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A critical mechanism in atrial fibrillation (AF) is cardiac autonomic nerve remodeling (ANR). MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Numerous miRNAs are involved in diseases of the nervous and cardiovascular systems. We aimed to assess the underlying role of miRNAs in regulating cardiac ANR in AF by right atrial tachypacing (A-TP) in canines. Following 4-week A-TP, the superior left ganglionated plexuses (SLGPs), which are embedded in the fat pads of the left atrium, were subjected to miRNA expression profiling to screen preferentially expressed miRNAs. Sixteen miRNAs showed significantly differential expression between the control and A-TP groups, including miR-206, miR-203, miR-224 and miR-137. In particular, we focused on miR-206, which was elevated ~10-fold in A-TP dogs. Forced expression of miR-206 through lentiviral infection based on A-TP in vivo significantly shortened the atrial effective refractory period (AERP) (81 ± 7 vs. 98 ± 7 ms, P &lt; 0.05). Immunohistochemical analysis showed that the regeneration of nerves increased more than 2-fold by miR-206 overexpression (P &lt; 0.01). The expression of superoxide dismutase 1 (SOD1) was repressed by miR-206 overexpression by Western blot and luciferase assay, indicative of SOD1 as a direct target of miR-206. Overexpression of miR-206 increased reactive oxygen species (ROS) levels in vitro and in vivo, whereas miR-206 silencing attenuated irradiation- or A-TP-induced ROS. Knockdown of SOD1 effectively abolished ROS reduction caused by miR-206 silencing. Our results found the differential expression of miRNAs in response to ANR in AF and elucidated the important role of miR-206 by targeting SOD1. The study illustrated the novel molecular mechanism of ANR and indicated a potential therapeutic target for AF.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25816284</pmid><doi>10.1371/journal.pone.0122674</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0122674-e0122674
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1667159218
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Animals
Atrial fibrillation
Atrial Fibrillation - genetics
Atrial Fibrillation - physiopathology
Atrial Fibrillation - veterinary
Atrium
Autonomic Pathways - physiopathology
Cardiac arrhythmia
Cardiology
Cells, Cultured
Collaboration
Dog Diseases - genetics
Dog Diseases - physiopathology
Dogs
Fibrillation
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation
Genomes
Health aspects
Heart
Heart diseases
Higher education
Hospitals
Irradiation
Laboratory animals
Medicine
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Molecular chains
Nerves
Oxidative stress
Oxygen
Pathogenesis
Post-transcription
Reactive oxygen species
Reactive Oxygen Species - metabolism
Refractory period
Regeneration
Ribonucleic acid
RNA
Superoxide dismutase
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Superoxide Dismutase-1
Superoxides
Therapeutic applications
title MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%20profiling%20of%20atrial%20fibrillation%20in%20canines:%20miR-206%20modulates%20intrinsic%20cardiac%20autonomic%20nerve%20remodeling%20by%20regulating%20SOD1&rft.jtitle=PloS%20one&rft.au=Zhang,%20Yujiao&rft.date=2015-03-27&rft.volume=10&rft.issue=3&rft.spage=e0122674&rft.epage=e0122674&rft.pages=e0122674-e0122674&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0122674&rft_dat=%3Cgale_plos_%3EA421800726%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667159218&rft_id=info:pmid/25816284&rft_galeid=A421800726&rft_doaj_id=oai_doaj_org_article_ba760736195741368f271eb527b3b1a5&rfr_iscdi=true