Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses
Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice usi...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-03, Vol.10 (3), p.e0121765-e0121765 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0121765 |
---|---|
container_issue | 3 |
container_start_page | e0121765 |
container_title | PloS one |
container_volume | 10 |
creator | Rasmussen, Tara L Ma, Yanlin Park, Chong Yon Harriss, June Pierce, Stephanie A Dekker, Joseph D Valenzuela, Nicolas Srivastava, Deepak Schwartz, Robert J Stewart, M David Tucker, Haley O |
description | Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense-a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality. |
doi_str_mv | 10.1371/journal.pone.0121765 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1666309584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422370620</galeid><doaj_id>oai_doaj_org_article_6474b35f28774de6a4df747fea3aeed0</doaj_id><sourcerecordid>A422370620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3c5d9a4ef7441a795caba3c6c6438f4af6138ae345ef561641a666e92421da9a3</originalsourceid><addsrcrecordid>eNqNkm9r2zAQxs3YWLts32BshsHYXiSz_li23wxK6bZAodCueysu0slRcKzUkkOzTz9lcUs8-mIYZHH63aO705Mkb0k2I6wgX1au71poZhvX4iwjlBQif5ackorRqaAZe360P0leeb_KspyVQrxMTmheZoyJ8jS5vVnvNEkNKNvYAAF9ukToQqpxi43brLEN6WKXQhugdq39bds6dfdWQ7BbjGGdXlynPnTofRqXWI1H_zp5YaDx-Gb4T5Lbbxc_z39ML6--z8_PLqdKVDRMmcp1BRxNwTmBosoVLIApoQRnpeFgBGElIOM5mlwQESEhBFaUU6KhAjZJ3h90N43zcpiIlyRSLKvykkdifiC0g5XcdHYN3U46sPJvwHW1jN1a1aAUvOALlhtaFgXXKIDrWFhhEBgg6ixqfR1u6xdr1CqOpoNmJDo-ae1S1m4rOStoXpVR4NMg0Lm7Hn2Qa-sVNg206PpD3VVZEpJH9MM_6NPdDVQNsQHbGhfvVXtRecYpZUW2f_1JMnuCip_GtVXRPsbG-Cjh8yghMgHvQw2993J-c_3_7NWvMfvxiI0-a8LSu6YPNrpmDPIDqDrnfYfmccgkk3v3P0xD7t0vB_fHtHfHD_SY9GB39gc4I_-N</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666309584</pqid></control><display><type>article</type><title>Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rasmussen, Tara L ; Ma, Yanlin ; Park, Chong Yon ; Harriss, June ; Pierce, Stephanie A ; Dekker, Joseph D ; Valenzuela, Nicolas ; Srivastava, Deepak ; Schwartz, Robert J ; Stewart, M David ; Tucker, Haley O</creator><contributor>Chen, Li</contributor><creatorcontrib>Rasmussen, Tara L ; Ma, Yanlin ; Park, Chong Yon ; Harriss, June ; Pierce, Stephanie A ; Dekker, Joseph D ; Valenzuela, Nicolas ; Srivastava, Deepak ; Schwartz, Robert J ; Stewart, M David ; Tucker, Haley O ; Chen, Li</creatorcontrib><description>Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense-a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0121765</identifier><identifier>PMID: 25803368</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Animals ; Autophagy ; Biochemistry ; Biophysics ; Cardiomyocytes ; Cardiovascular disease ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - metabolism ; Cell Proliferation ; Cellular stress response ; Chlorocebus aethiops ; Clonal deletion ; COS Cells ; Defects ; Departments ; Developmental biology ; Developmental stages ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Embryo, Mammalian - embryology ; Embryogenesis ; Embryonic development ; Embryos ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Evolutionary conservation ; Gene expression ; Gene Expression Regulation, Developmental ; Gene Knockout Techniques ; Genetic engineering ; Heart ; Heart - growth & development ; Heart failure ; Histone methyltransferase ; Histones ; Humans ; Impairment ; Laboratories ; Lethality ; Methylation ; Mice ; Molecular biology ; Molecular Sequence Data ; Morphogenesis ; Muscle Proteins - deficiency ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Myocardium - cytology ; Myocardium - metabolism ; Nkx2.5 protein ; Oxidative Stress ; Pediatrics ; Phenotypes ; Proteins ; Rodents ; Superhigh frequencies ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; Up-Regulation ; Ventricle ; Zebrafish</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0121765-e0121765</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Rasmussen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Rasmussen et al 2015 Rasmussen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3c5d9a4ef7441a795caba3c6c6438f4af6138ae345ef561641a666e92421da9a3</citedby><cites>FETCH-LOGICAL-c692t-3c5d9a4ef7441a795caba3c6c6438f4af6138ae345ef561641a666e92421da9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372598/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372598/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25803368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Li</contributor><creatorcontrib>Rasmussen, Tara L</creatorcontrib><creatorcontrib>Ma, Yanlin</creatorcontrib><creatorcontrib>Park, Chong Yon</creatorcontrib><creatorcontrib>Harriss, June</creatorcontrib><creatorcontrib>Pierce, Stephanie A</creatorcontrib><creatorcontrib>Dekker, Joseph D</creatorcontrib><creatorcontrib>Valenzuela, Nicolas</creatorcontrib><creatorcontrib>Srivastava, Deepak</creatorcontrib><creatorcontrib>Schwartz, Robert J</creatorcontrib><creatorcontrib>Stewart, M David</creatorcontrib><creatorcontrib>Tucker, Haley O</creatorcontrib><title>Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense-a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Biochemistry</subject><subject>Biophysics</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular disease</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Proliferation</subject><subject>Cellular stress response</subject><subject>Chlorocebus aethiops</subject><subject>Clonal deletion</subject><subject>COS Cells</subject><subject>Defects</subject><subject>Departments</subject><subject>Developmental biology</subject><subject>Developmental stages</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Embryo, Mammalian - embryology</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Evolutionary conservation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Knockout Techniques</subject><subject>Genetic engineering</subject><subject>Heart</subject><subject>Heart - growth & development</subject><subject>Heart failure</subject><subject>Histone methyltransferase</subject><subject>Histones</subject><subject>Humans</subject><subject>Impairment</subject><subject>Laboratories</subject><subject>Lethality</subject><subject>Methylation</subject><subject>Mice</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Morphogenesis</subject><subject>Muscle Proteins - deficiency</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Nkx2.5 protein</subject><subject>Oxidative Stress</subject><subject>Pediatrics</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Superhigh frequencies</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Up-Regulation</subject><subject>Ventricle</subject><subject>Zebrafish</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm9r2zAQxs3YWLts32BshsHYXiSz_li23wxK6bZAodCueysu0slRcKzUkkOzTz9lcUs8-mIYZHH63aO705Mkb0k2I6wgX1au71poZhvX4iwjlBQif5ackorRqaAZe360P0leeb_KspyVQrxMTmheZoyJ8jS5vVnvNEkNKNvYAAF9ukToQqpxi43brLEN6WKXQhugdq39bds6dfdWQ7BbjGGdXlynPnTofRqXWI1H_zp5YaDx-Gb4T5Lbbxc_z39ML6--z8_PLqdKVDRMmcp1BRxNwTmBosoVLIApoQRnpeFgBGElIOM5mlwQESEhBFaUU6KhAjZJ3h90N43zcpiIlyRSLKvykkdifiC0g5XcdHYN3U46sPJvwHW1jN1a1aAUvOALlhtaFgXXKIDrWFhhEBgg6ixqfR1u6xdr1CqOpoNmJDo-ae1S1m4rOStoXpVR4NMg0Lm7Hn2Qa-sVNg206PpD3VVZEpJH9MM_6NPdDVQNsQHbGhfvVXtRecYpZUW2f_1JMnuCip_GtVXRPsbG-Cjh8yghMgHvQw2993J-c_3_7NWvMfvxiI0-a8LSu6YPNrpmDPIDqDrnfYfmccgkk3v3P0xD7t0vB_fHtHfHD_SY9GB39gc4I_-N</recordid><startdate>20150324</startdate><enddate>20150324</enddate><creator>Rasmussen, Tara L</creator><creator>Ma, Yanlin</creator><creator>Park, Chong Yon</creator><creator>Harriss, June</creator><creator>Pierce, Stephanie A</creator><creator>Dekker, Joseph D</creator><creator>Valenzuela, Nicolas</creator><creator>Srivastava, Deepak</creator><creator>Schwartz, Robert J</creator><creator>Stewart, M David</creator><creator>Tucker, Haley O</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150324</creationdate><title>Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses</title><author>Rasmussen, Tara L ; Ma, Yanlin ; Park, Chong Yon ; Harriss, June ; Pierce, Stephanie A ; Dekker, Joseph D ; Valenzuela, Nicolas ; Srivastava, Deepak ; Schwartz, Robert J ; Stewart, M David ; Tucker, Haley O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3c5d9a4ef7441a795caba3c6c6438f4af6138ae345ef561641a666e92421da9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Biochemistry</topic><topic>Biophysics</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular disease</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Proliferation</topic><topic>Cellular stress response</topic><topic>Chlorocebus aethiops</topic><topic>Clonal deletion</topic><topic>COS Cells</topic><topic>Defects</topic><topic>Departments</topic><topic>Developmental biology</topic><topic>Developmental stages</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Embryo, Mammalian - embryology</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Evolutionary conservation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Knockout Techniques</topic><topic>Genetic engineering</topic><topic>Heart</topic><topic>Heart - growth & development</topic><topic>Heart failure</topic><topic>Histone methyltransferase</topic><topic>Histones</topic><topic>Humans</topic><topic>Impairment</topic><topic>Laboratories</topic><topic>Lethality</topic><topic>Methylation</topic><topic>Mice</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Morphogenesis</topic><topic>Muscle Proteins - deficiency</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Nkx2.5 protein</topic><topic>Oxidative Stress</topic><topic>Pediatrics</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Superhigh frequencies</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Up-Regulation</topic><topic>Ventricle</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, Tara L</creatorcontrib><creatorcontrib>Ma, Yanlin</creatorcontrib><creatorcontrib>Park, Chong Yon</creatorcontrib><creatorcontrib>Harriss, June</creatorcontrib><creatorcontrib>Pierce, Stephanie A</creatorcontrib><creatorcontrib>Dekker, Joseph D</creatorcontrib><creatorcontrib>Valenzuela, Nicolas</creatorcontrib><creatorcontrib>Srivastava, Deepak</creatorcontrib><creatorcontrib>Schwartz, Robert J</creatorcontrib><creatorcontrib>Stewart, M David</creatorcontrib><creatorcontrib>Tucker, Haley O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, Tara L</au><au>Ma, Yanlin</au><au>Park, Chong Yon</au><au>Harriss, June</au><au>Pierce, Stephanie A</au><au>Dekker, Joseph D</au><au>Valenzuela, Nicolas</au><au>Srivastava, Deepak</au><au>Schwartz, Robert J</au><au>Stewart, M David</au><au>Tucker, Haley O</au><au>Chen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-24</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0121765</spage><epage>e0121765</epage><pages>e0121765-e0121765</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense-a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25803368</pmid><doi>10.1371/journal.pone.0121765</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-03, Vol.10 (3), p.e0121765-e0121765 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1666309584 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals Autophagy Biochemistry Biophysics Cardiomyocytes Cardiovascular disease Cell Cycle Proteins - chemistry Cell Cycle Proteins - metabolism Cell Proliferation Cellular stress response Chlorocebus aethiops Clonal deletion COS Cells Defects Departments Developmental biology Developmental stages DNA-Binding Proteins - deficiency DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Embryo, Mammalian - embryology Embryogenesis Embryonic development Embryos Endoplasmic reticulum Endoplasmic Reticulum Stress Evolutionary conservation Gene expression Gene Expression Regulation, Developmental Gene Knockout Techniques Genetic engineering Heart Heart - growth & development Heart failure Histone methyltransferase Histones Humans Impairment Laboratories Lethality Methylation Mice Molecular biology Molecular Sequence Data Morphogenesis Muscle Proteins - deficiency Muscle Proteins - genetics Muscle Proteins - metabolism Myocardium - cytology Myocardium - metabolism Nkx2.5 protein Oxidative Stress Pediatrics Phenotypes Proteins Rodents Superhigh frequencies Transcription Factors - deficiency Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic Up-Regulation Ventricle Zebrafish |
title | Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smyd1%20facilitates%20heart%20development%20by%20antagonizing%20oxidative%20and%20ER%20stress%20responses&rft.jtitle=PloS%20one&rft.au=Rasmussen,%20Tara%20L&rft.date=2015-03-24&rft.volume=10&rft.issue=3&rft.spage=e0121765&rft.epage=e0121765&rft.pages=e0121765-e0121765&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0121765&rft_dat=%3Cgale_plos_%3EA422370620%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666309584&rft_id=info:pmid/25803368&rft_galeid=A422370620&rft_doaj_id=oai_doaj_org_article_6474b35f28774de6a4df747fea3aeed0&rfr_iscdi=true |