Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields

Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0119490-e0119490
Hauptverfasser: Chang, Kuan Y, Lin, Tung-pei, Shih, Ling-Yi, Wang, Chien-Kuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0119490
container_issue 3
container_start_page e0119490
container_title PloS one
container_volume 10
creator Chang, Kuan Y
Lin, Tung-pei
Shih, Ling-Yi
Wang, Chien-Kuo
description Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew's correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion.
doi_str_mv 10.1371/journal.pone.0119490
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1666309576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422370719</galeid><doaj_id>oai_doaj_org_article_c91dab2261be4cfab8344288f3320c39</doaj_id><sourcerecordid>A422370719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-ed610c8cf2447459be3a408cb206e99cceb3307e51ec04b11b5d46b133561a543</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLk1bV-EYfEysLDg7TXkctrJkGlq0or77U2d7jKVfZA-pJz8_v-cc5KTZc8xWmNa4nd7P4ZOunXvO1gjjGtWowfZOa4pWXGC6MOT_7PsSYx7hApacf44OyNFhShF5Dxzm-RxE23MZWfyPoCxerC-y32TDzvIdbCD1dLlAdoUjlNcdoM9WB28smmjh36wBmKuZASTJ6n2nbGTySRLtv6QNxaciU-zR410EZ7N60X2_eOHb5efV1fXn7aXm6uVLotqWIHhGOlKN4SxkhW1AioZqrQiiENdaw0qJV9CgUEjpjBWhWFcYUoLjmXB6EX28ujbOx_F3KgoMOecorooeSK2R8J4uRd9sAcZboSXVvwN-NAKGVLhDoSusZGKEI4VMN1IVVHGSFU1lBKkaZ283s-njeoARkM3BOkWpsudzu5E638JRktCC5QM3swGwf8cIQ7iYKMG52QHfjzmXVcVKSf01T_o_dXNVCtTAbZrfDpXT6ZiwwihJSrxlPf6Hip9BtLtplfV2BRfCN4uBIkZ4PfQyjFGsf365f_Z6x9L9vUJuwPphl30bpyeUFyC7AimtxdjgOauyRiJaShuuyGmoRDzUCTZi9MLuhPdTgH9A457B2o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666309576</pqid></control><display><type>article</type><title>Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chang, Kuan Y ; Lin, Tung-pei ; Shih, Ling-Yi ; Wang, Chien-Kuo</creator><contributor>Bhattacharjya, Surajit</contributor><creatorcontrib>Chang, Kuan Y ; Lin, Tung-pei ; Shih, Ling-Yi ; Wang, Chien-Kuo ; Bhattacharjya, Surajit</creatorcontrib><description>Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew's correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0119490</identifier><identifier>PMID: 25803302</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Amino Acid Sequence ; Amino acids ; Amino Acids - analysis ; Analysis ; Anti-Infective Agents - analysis ; Anti-Infective Agents - chemistry ; Anti-Infective Agents - pharmacology ; Antiinfectives and antibacterials ; Antimicrobial Cationic Peptides - analysis ; Antimicrobial Cationic Peptides - chemistry ; Antimicrobial Cationic Peptides - pharmacology ; Antimicrobial peptides ; Arginine ; Aspartate ; Aspartic acid ; Bacteria ; Bioinformatics ; Cell adhesion ; Computation ; Computer applications ; Computer science ; Conditional random fields ; Cores ; Correlation coefficient ; Correlation coefficients ; Discriminant analysis ; Drug development ; Fields (mathematics) ; Forecasting ; Fungi ; Gene expression ; Glutamic acid ; Glycine ; Learning algorithms ; Linguistics ; Lysine ; Machine learning ; Mathematical models ; Mathematical programming ; Methionine ; Microorganisms ; Models, Chemical ; Neutrophils ; Parasites ; Peptides ; Predictions ; Protein Aggregates ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Similarity ; Structure-Activity Relationship ; Viruses</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0119490-e0119490</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Chang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Chang et al 2015 Chang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-ed610c8cf2447459be3a408cb206e99cceb3307e51ec04b11b5d46b133561a543</citedby><cites>FETCH-LOGICAL-c758t-ed610c8cf2447459be3a408cb206e99cceb3307e51ec04b11b5d46b133561a543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25803302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bhattacharjya, Surajit</contributor><creatorcontrib>Chang, Kuan Y</creatorcontrib><creatorcontrib>Lin, Tung-pei</creatorcontrib><creatorcontrib>Shih, Ling-Yi</creatorcontrib><creatorcontrib>Wang, Chien-Kuo</creatorcontrib><title>Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew's correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amino Acids - analysis</subject><subject>Analysis</subject><subject>Anti-Infective Agents - analysis</subject><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial Cationic Peptides - analysis</subject><subject>Antimicrobial Cationic Peptides - chemistry</subject><subject>Antimicrobial Cationic Peptides - pharmacology</subject><subject>Antimicrobial peptides</subject><subject>Arginine</subject><subject>Aspartate</subject><subject>Aspartic acid</subject><subject>Bacteria</subject><subject>Bioinformatics</subject><subject>Cell adhesion</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer science</subject><subject>Conditional random fields</subject><subject>Cores</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Discriminant analysis</subject><subject>Drug development</subject><subject>Fields (mathematics)</subject><subject>Forecasting</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Glutamic acid</subject><subject>Glycine</subject><subject>Learning algorithms</subject><subject>Linguistics</subject><subject>Lysine</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Methionine</subject><subject>Microorganisms</subject><subject>Models, Chemical</subject><subject>Neutrophils</subject><subject>Parasites</subject><subject>Peptides</subject><subject>Predictions</subject><subject>Protein Aggregates</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Similarity</subject><subject>Structure-Activity Relationship</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLk1bV-EYfEysLDg7TXkctrJkGlq0or77U2d7jKVfZA-pJz8_v-cc5KTZc8xWmNa4nd7P4ZOunXvO1gjjGtWowfZOa4pWXGC6MOT_7PsSYx7hApacf44OyNFhShF5Dxzm-RxE23MZWfyPoCxerC-y32TDzvIdbCD1dLlAdoUjlNcdoM9WB28smmjh36wBmKuZASTJ6n2nbGTySRLtv6QNxaciU-zR410EZ7N60X2_eOHb5efV1fXn7aXm6uVLotqWIHhGOlKN4SxkhW1AioZqrQiiENdaw0qJV9CgUEjpjBWhWFcYUoLjmXB6EX28ujbOx_F3KgoMOecorooeSK2R8J4uRd9sAcZboSXVvwN-NAKGVLhDoSusZGKEI4VMN1IVVHGSFU1lBKkaZ283s-njeoARkM3BOkWpsudzu5E638JRktCC5QM3swGwf8cIQ7iYKMG52QHfjzmXVcVKSf01T_o_dXNVCtTAbZrfDpXT6ZiwwihJSrxlPf6Hip9BtLtplfV2BRfCN4uBIkZ4PfQyjFGsf365f_Z6x9L9vUJuwPphl30bpyeUFyC7AimtxdjgOauyRiJaShuuyGmoRDzUCTZi9MLuhPdTgH9A457B2o</recordid><startdate>20150324</startdate><enddate>20150324</enddate><creator>Chang, Kuan Y</creator><creator>Lin, Tung-pei</creator><creator>Shih, Ling-Yi</creator><creator>Wang, Chien-Kuo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150324</creationdate><title>Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields</title><author>Chang, Kuan Y ; Lin, Tung-pei ; Shih, Ling-Yi ; Wang, Chien-Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-ed610c8cf2447459be3a408cb206e99cceb3307e51ec04b11b5d46b133561a543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amino Acids - analysis</topic><topic>Analysis</topic><topic>Anti-Infective Agents - analysis</topic><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial Cationic Peptides - analysis</topic><topic>Antimicrobial Cationic Peptides - chemistry</topic><topic>Antimicrobial Cationic Peptides - pharmacology</topic><topic>Antimicrobial peptides</topic><topic>Arginine</topic><topic>Aspartate</topic><topic>Aspartic acid</topic><topic>Bacteria</topic><topic>Bioinformatics</topic><topic>Cell adhesion</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer science</topic><topic>Conditional random fields</topic><topic>Cores</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Discriminant analysis</topic><topic>Drug development</topic><topic>Fields (mathematics)</topic><topic>Forecasting</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Glutamic acid</topic><topic>Glycine</topic><topic>Learning algorithms</topic><topic>Linguistics</topic><topic>Lysine</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Methionine</topic><topic>Microorganisms</topic><topic>Models, Chemical</topic><topic>Neutrophils</topic><topic>Parasites</topic><topic>Peptides</topic><topic>Predictions</topic><topic>Protein Aggregates</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Similarity</topic><topic>Structure-Activity Relationship</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Kuan Y</creatorcontrib><creatorcontrib>Lin, Tung-pei</creatorcontrib><creatorcontrib>Shih, Ling-Yi</creatorcontrib><creatorcontrib>Wang, Chien-Kuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Kuan Y</au><au>Lin, Tung-pei</au><au>Shih, Ling-Yi</au><au>Wang, Chien-Kuo</au><au>Bhattacharjya, Surajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-24</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0119490</spage><epage>e0119490</epage><pages>e0119490-e0119490</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew's correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25803302</pmid><doi>10.1371/journal.pone.0119490</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0119490-e0119490
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1666309576
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Algorithms
Amino Acid Sequence
Amino acids
Amino Acids - analysis
Analysis
Anti-Infective Agents - analysis
Anti-Infective Agents - chemistry
Anti-Infective Agents - pharmacology
Antiinfectives and antibacterials
Antimicrobial Cationic Peptides - analysis
Antimicrobial Cationic Peptides - chemistry
Antimicrobial Cationic Peptides - pharmacology
Antimicrobial peptides
Arginine
Aspartate
Aspartic acid
Bacteria
Bioinformatics
Cell adhesion
Computation
Computer applications
Computer science
Conditional random fields
Cores
Correlation coefficient
Correlation coefficients
Discriminant analysis
Drug development
Fields (mathematics)
Forecasting
Fungi
Gene expression
Glutamic acid
Glycine
Learning algorithms
Linguistics
Lysine
Machine learning
Mathematical models
Mathematical programming
Methionine
Microorganisms
Models, Chemical
Neutrophils
Parasites
Peptides
Predictions
Protein Aggregates
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
Similarity
Structure-Activity Relationship
Viruses
title Analysis and prediction of the critical regions of antimicrobial peptides based on conditional random fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20prediction%20of%20the%20critical%20regions%20of%20antimicrobial%20peptides%20based%20on%20conditional%20random%20fields&rft.jtitle=PloS%20one&rft.au=Chang,%20Kuan%20Y&rft.date=2015-03-24&rft.volume=10&rft.issue=3&rft.spage=e0119490&rft.epage=e0119490&rft.pages=e0119490-e0119490&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0119490&rft_dat=%3Cgale_plos_%3EA422370719%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666309576&rft_id=info:pmid/25803302&rft_galeid=A422370719&rft_doaj_id=oai_doaj_org_article_c91dab2261be4cfab8344288f3320c39&rfr_iscdi=true