Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature)
Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have b...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-03, Vol.10 (3), p.e0121475-e0121475 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0121475 |
---|---|
container_issue | 3 |
container_start_page | e0121475 |
container_title | PloS one |
container_volume | 10 |
creator | Notas, George Bariotakis, Michail Kalogrias, Vaios Andrianaki, Maria Azariadis, Kalliopi Kampouri, Errika Theodoropoulou, Katerina Lavrentaki, Katerina Kastrinakis, Stelios Kampa, Marilena Agouridakis, Panagiotis Pirintsos, Stergios Castanas, Elias |
description | Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions. |
doi_str_mv | 10.1371/journal.pone.0121475 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1664931363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423859329</galeid><doaj_id>oai_doaj_org_article_eee2d043d63d40b8b8a019ade2648e2a</doaj_id><sourcerecordid>A423859329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9b25b41d1be145f88075fc2997a4f73a6a1479eae572ffaf187a4898954e579b3</originalsourceid><addsrcrecordid>eNqNk21r2zAQx83YWLtu32BshsFoYcmsB8vWm0HongJlhT30rTjL50TBtjzJDuu3n5K4JR59MfxC5u53_9Od7qLoJUnmhGXk_cYOroV63tkW5wmhhGfpo-iUSEZngibs8dH_SfTM-02SpCwX4ml0QtNMcpKI08gutB4c9Bh3Dkuje2Pb2Faxxy06jKGu0a2Mjh3C3ufj4jaG2DfBE6B-x2K7Nc62DbY91HEHDhrs0fn4_NvHm-W7uMemw5BjcHjxPHpSQe3xxXieRb8-f_p5-XV2df1lebm4mmkhaT-TBU0LTkpSIOFpledJllaaSpkBrzIGAkK5EgHTjFYVVCQPjlzmMuXBJAt2Fr0-6Ha19WrslVdECC4ZYYIFYnkgSgsb1TnTgLtVFozaG6xbKXC90TUqRKRlwlkpWMmTIi9ySIiEEqngOVIIWh_GbEPRYKlDJxzUE9GppzVrtbJbxZnIM0mCwPko4OzvAX2vGuM11jW0aIf9vQWVPOdpQN_8gz5c3UitIBRg2sqGvHonqhacsjwNoyEDNX-ACl-JjdFhsCoT7JOAi0lAYHr8069g8F4tf3z_f_b6Zsq-PWLXCHW_9rYe9iM3BfkB1M5677C6bzJJ1G4v7rqhdnuhxr0IYa-OH-g-6G4R2F8Bhghs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664931363</pqid></control><display><type>article</type><title>Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Notas, George ; Bariotakis, Michail ; Kalogrias, Vaios ; Andrianaki, Maria ; Azariadis, Kalliopi ; Kampouri, Errika ; Theodoropoulou, Katerina ; Lavrentaki, Katerina ; Kastrinakis, Stelios ; Kampa, Marilena ; Agouridakis, Panagiotis ; Pirintsos, Stergios ; Castanas, Elias</creator><contributor>Hogan, Simon Patrick</contributor><creatorcontrib>Notas, George ; Bariotakis, Michail ; Kalogrias, Vaios ; Andrianaki, Maria ; Azariadis, Kalliopi ; Kampouri, Errika ; Theodoropoulou, Katerina ; Lavrentaki, Katerina ; Kastrinakis, Stelios ; Kampa, Marilena ; Agouridakis, Panagiotis ; Pirintsos, Stergios ; Castanas, Elias ; Hogan, Simon Patrick</creatorcontrib><description>Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0121475</identifier><identifier>PMID: 25794106</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Air pollution ; Allergic reactions ; Allergies ; Allergy ; Analysis ; Asthma ; Biology ; Climate ; Development and progression ; Emergency medical care ; Emergency Service, Hospital ; Endocrinology ; Environmental parameters ; Ethics ; Etiology ; Generalized linear models ; Greece ; Hospitals ; Hospitals, University ; Humans ; Humidity ; Hypersensitivity ; Hypersensitivity - diagnosis ; Immunoglobulin E - immunology ; Impact analysis ; Medicine ; Meteorological data ; Models, Theoretical ; Normalized difference vegetative index ; Plants - adverse effects ; Predictions ; Preempting ; Satellites ; Seasons ; Spatial distribution ; Temperature ; Temporal distribution ; Test sets ; Vegetation ; Vegetation index</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0121475-e0121475</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Notas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Notas et al 2015 Notas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9b25b41d1be145f88075fc2997a4f73a6a1479eae572ffaf187a4898954e579b3</citedby><cites>FETCH-LOGICAL-c692t-9b25b41d1be145f88075fc2997a4f73a6a1479eae572ffaf187a4898954e579b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368791/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368791/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25794106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hogan, Simon Patrick</contributor><creatorcontrib>Notas, George</creatorcontrib><creatorcontrib>Bariotakis, Michail</creatorcontrib><creatorcontrib>Kalogrias, Vaios</creatorcontrib><creatorcontrib>Andrianaki, Maria</creatorcontrib><creatorcontrib>Azariadis, Kalliopi</creatorcontrib><creatorcontrib>Kampouri, Errika</creatorcontrib><creatorcontrib>Theodoropoulou, Katerina</creatorcontrib><creatorcontrib>Lavrentaki, Katerina</creatorcontrib><creatorcontrib>Kastrinakis, Stelios</creatorcontrib><creatorcontrib>Kampa, Marilena</creatorcontrib><creatorcontrib>Agouridakis, Panagiotis</creatorcontrib><creatorcontrib>Pirintsos, Stergios</creatorcontrib><creatorcontrib>Castanas, Elias</creatorcontrib><title>Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.</description><subject>Air pollution</subject><subject>Allergic reactions</subject><subject>Allergies</subject><subject>Allergy</subject><subject>Analysis</subject><subject>Asthma</subject><subject>Biology</subject><subject>Climate</subject><subject>Development and progression</subject><subject>Emergency medical care</subject><subject>Emergency Service, Hospital</subject><subject>Endocrinology</subject><subject>Environmental parameters</subject><subject>Ethics</subject><subject>Etiology</subject><subject>Generalized linear models</subject><subject>Greece</subject><subject>Hospitals</subject><subject>Hospitals, University</subject><subject>Humans</subject><subject>Humidity</subject><subject>Hypersensitivity</subject><subject>Hypersensitivity - diagnosis</subject><subject>Immunoglobulin E - immunology</subject><subject>Impact analysis</subject><subject>Medicine</subject><subject>Meteorological data</subject><subject>Models, Theoretical</subject><subject>Normalized difference vegetative index</subject><subject>Plants - adverse effects</subject><subject>Predictions</subject><subject>Preempting</subject><subject>Satellites</subject><subject>Seasons</subject><subject>Spatial distribution</subject><subject>Temperature</subject><subject>Temporal distribution</subject><subject>Test sets</subject><subject>Vegetation</subject><subject>Vegetation index</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21r2zAQx83YWLtu32BshsFoYcmsB8vWm0HongJlhT30rTjL50TBtjzJDuu3n5K4JR59MfxC5u53_9Od7qLoJUnmhGXk_cYOroV63tkW5wmhhGfpo-iUSEZngibs8dH_SfTM-02SpCwX4ml0QtNMcpKI08gutB4c9Bh3Dkuje2Pb2Faxxy06jKGu0a2Mjh3C3ufj4jaG2DfBE6B-x2K7Nc62DbY91HEHDhrs0fn4_NvHm-W7uMemw5BjcHjxPHpSQe3xxXieRb8-f_p5-XV2df1lebm4mmkhaT-TBU0LTkpSIOFpledJllaaSpkBrzIGAkK5EgHTjFYVVCQPjlzmMuXBJAt2Fr0-6Ha19WrslVdECC4ZYYIFYnkgSgsb1TnTgLtVFozaG6xbKXC90TUqRKRlwlkpWMmTIi9ySIiEEqngOVIIWh_GbEPRYKlDJxzUE9GppzVrtbJbxZnIM0mCwPko4OzvAX2vGuM11jW0aIf9vQWVPOdpQN_8gz5c3UitIBRg2sqGvHonqhacsjwNoyEDNX-ACl-JjdFhsCoT7JOAi0lAYHr8069g8F4tf3z_f_b6Zsq-PWLXCHW_9rYe9iM3BfkB1M5677C6bzJJ1G4v7rqhdnuhxr0IYa-OH-g-6G4R2F8Bhghs</recordid><startdate>20150320</startdate><enddate>20150320</enddate><creator>Notas, George</creator><creator>Bariotakis, Michail</creator><creator>Kalogrias, Vaios</creator><creator>Andrianaki, Maria</creator><creator>Azariadis, Kalliopi</creator><creator>Kampouri, Errika</creator><creator>Theodoropoulou, Katerina</creator><creator>Lavrentaki, Katerina</creator><creator>Kastrinakis, Stelios</creator><creator>Kampa, Marilena</creator><creator>Agouridakis, Panagiotis</creator><creator>Pirintsos, Stergios</creator><creator>Castanas, Elias</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150320</creationdate><title>Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature)</title><author>Notas, George ; Bariotakis, Michail ; Kalogrias, Vaios ; Andrianaki, Maria ; Azariadis, Kalliopi ; Kampouri, Errika ; Theodoropoulou, Katerina ; Lavrentaki, Katerina ; Kastrinakis, Stelios ; Kampa, Marilena ; Agouridakis, Panagiotis ; Pirintsos, Stergios ; Castanas, Elias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9b25b41d1be145f88075fc2997a4f73a6a1479eae572ffaf187a4898954e579b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air pollution</topic><topic>Allergic reactions</topic><topic>Allergies</topic><topic>Allergy</topic><topic>Analysis</topic><topic>Asthma</topic><topic>Biology</topic><topic>Climate</topic><topic>Development and progression</topic><topic>Emergency medical care</topic><topic>Emergency Service, Hospital</topic><topic>Endocrinology</topic><topic>Environmental parameters</topic><topic>Ethics</topic><topic>Etiology</topic><topic>Generalized linear models</topic><topic>Greece</topic><topic>Hospitals</topic><topic>Hospitals, University</topic><topic>Humans</topic><topic>Humidity</topic><topic>Hypersensitivity</topic><topic>Hypersensitivity - diagnosis</topic><topic>Immunoglobulin E - immunology</topic><topic>Impact analysis</topic><topic>Medicine</topic><topic>Meteorological data</topic><topic>Models, Theoretical</topic><topic>Normalized difference vegetative index</topic><topic>Plants - adverse effects</topic><topic>Predictions</topic><topic>Preempting</topic><topic>Satellites</topic><topic>Seasons</topic><topic>Spatial distribution</topic><topic>Temperature</topic><topic>Temporal distribution</topic><topic>Test sets</topic><topic>Vegetation</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Notas, George</creatorcontrib><creatorcontrib>Bariotakis, Michail</creatorcontrib><creatorcontrib>Kalogrias, Vaios</creatorcontrib><creatorcontrib>Andrianaki, Maria</creatorcontrib><creatorcontrib>Azariadis, Kalliopi</creatorcontrib><creatorcontrib>Kampouri, Errika</creatorcontrib><creatorcontrib>Theodoropoulou, Katerina</creatorcontrib><creatorcontrib>Lavrentaki, Katerina</creatorcontrib><creatorcontrib>Kastrinakis, Stelios</creatorcontrib><creatorcontrib>Kampa, Marilena</creatorcontrib><creatorcontrib>Agouridakis, Panagiotis</creatorcontrib><creatorcontrib>Pirintsos, Stergios</creatorcontrib><creatorcontrib>Castanas, Elias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Notas, George</au><au>Bariotakis, Michail</au><au>Kalogrias, Vaios</au><au>Andrianaki, Maria</au><au>Azariadis, Kalliopi</au><au>Kampouri, Errika</au><au>Theodoropoulou, Katerina</au><au>Lavrentaki, Katerina</au><au>Kastrinakis, Stelios</au><au>Kampa, Marilena</au><au>Agouridakis, Panagiotis</au><au>Pirintsos, Stergios</au><au>Castanas, Elias</au><au>Hogan, Simon Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-20</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0121475</spage><epage>e0121475</epage><pages>e0121475-e0121475</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25794106</pmid><doi>10.1371/journal.pone.0121475</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-03, Vol.10 (3), p.e0121475-e0121475 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1664931363 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Air pollution Allergic reactions Allergies Allergy Analysis Asthma Biology Climate Development and progression Emergency medical care Emergency Service, Hospital Endocrinology Environmental parameters Ethics Etiology Generalized linear models Greece Hospitals Hospitals, University Humans Humidity Hypersensitivity Hypersensitivity - diagnosis Immunoglobulin E - immunology Impact analysis Medicine Meteorological data Models, Theoretical Normalized difference vegetative index Plants - adverse effects Predictions Preempting Satellites Seasons Spatial distribution Temperature Temporal distribution Test sets Vegetation Vegetation index |
title | Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20prediction%20of%20severe%20allergic%20reactions%20by%20a%20small%20set%20of%20environmental%20parameters%20(NDVI,%20temperature)&rft.jtitle=PloS%20one&rft.au=Notas,%20George&rft.date=2015-03-20&rft.volume=10&rft.issue=3&rft.spage=e0121475&rft.epage=e0121475&rft.pages=e0121475-e0121475&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0121475&rft_dat=%3Cgale_plos_%3EA423859329%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664931363&rft_id=info:pmid/25794106&rft_galeid=A423859329&rft_doaj_id=oai_doaj_org_article_eee2d043d63d40b8b8a019ade2648e2a&rfr_iscdi=true |