Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist

Beta cell death caused by endoplasmic reticulum (ER) stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP)-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0120536-e0120536
Hauptverfasser: Kim, Mi-Kyung, Cho, Jin-Hwan, Lee, Jae-Jin, Son, Moon-Ho, Lee, Kong-Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0120536
container_issue 3
container_start_page e0120536
container_title PloS one
container_volume 10
creator Kim, Mi-Kyung
Cho, Jin-Hwan
Lee, Jae-Jin
Son, Moon-Ho
Lee, Kong-Joo
description Beta cell death caused by endoplasmic reticulum (ER) stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP)-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1) reversed by exenatide, 2) exaggerated by exenatide, and 3) unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3β, ε, and θ, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide.
doi_str_mv 10.1371/journal.pone.0120536
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1664931094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423859268</galeid><doaj_id>oai_doaj_org_article_169ca20ae59e4c66aec5a7cf8d1c7be3</doaj_id><sourcerecordid>A423859268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9c561ecb807c6e08930c08b9ea3425b075809fd4c71bc2504e6a5aea914400523</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYmPwBggsTUIg0WLHjhNzgTRNY1Sq2LQBt9apc9J6SuNiO9N2y5PjrN3Uol2gXCRyvv-zj-2TZa8ZHTNesk9XrvcdtOOV63BMWU4LLp9k-0zxfCRzyp9ufe9lL0K4ogmppHye7eVFqbhQcj_7c-5dRLe0hkCy3QYbiGvI5PvliBEPkdgu9K3t3BKIwbYNn8nJBQnRYwgEmwZNDClZk7hAshpcJtprJN61OIjwBjuItsaPBMjp9HywosFVdJ7A3HU2xJfZswbagK8274Ps59eTH8ffRtOz08nx0XRkpMrjSJlCMjSzipZGIq0Up4ZWM4XARV7MaFlUVDW1MCWbmbygAiUUgKCYEKnynB9kb9feVeuC3mxf0ExKoTijSiRisiZqB1d65e0S_K12YPXdgPNzDT5a02JKKQM5BSwUCiMloCmgNE1VM1POkCfXl81s_WyJtcEuemh3pLt_OrvQc3etBZdVSVkSvN8IvPvdY4h6acNwBNCh6-_WLXMlWCkTevgP-nh1G2oOqQDbNS7NawapPhI5rwqVyypR40eo9NSYLkm6a41N4zuBDzuBxES8iXPoQ9CTy4v_Z89-7bLvttgFQhsXwbV9tK4Lu6BYg8a7EDw2D5vMqB5a5X439NAqetMqKfZm-4AeQve9wf8CvYYOJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664931094</pqid></control><display><type>article</type><title>Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Kim, Mi-Kyung ; Cho, Jin-Hwan ; Lee, Jae-Jin ; Son, Moon-Ho ; Lee, Kong-Joo</creator><contributor>Obukhov, Alexander G</contributor><creatorcontrib>Kim, Mi-Kyung ; Cho, Jin-Hwan ; Lee, Jae-Jin ; Son, Moon-Ho ; Lee, Kong-Joo ; Obukhov, Alexander G</creatorcontrib><description>Beta cell death caused by endoplasmic reticulum (ER) stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP)-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1) reversed by exenatide, 2) exaggerated by exenatide, and 3) unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3β, ε, and θ, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0120536</identifier><identifier>PMID: 25793496</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>14-3-3 protein ; 14-3-3 Proteins - metabolism ; Animals ; Antidiabetics ; Apoptosis ; Beta cells ; Calcium ; Cell culture ; Cell death ; Cell Death - drug effects ; Cell Line ; Comparative analysis ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress - drug effects ; GLP-1 receptor agonists ; Glucagon ; Glucagon-Like Peptide-1 Receptor - agonists ; Glucose ; Heat shock proteins ; Hypoglycemic agents ; Insulin ; Insulinoma ; Insulinoma - metabolism ; Isoforms ; Kinases ; Mass spectrometry ; Mortality ; Neuroendocrine tumors ; Oligopeptidase ; Pancreatic Neoplasms - metabolism ; Peptides ; Peptides - pharmacology ; Pharmaceutical sciences ; Pharmacy ; Phosphorylation ; Prevention ; Protein folding ; Protein Interaction Maps ; Protein Processing, Post-Translational - drug effects ; Proteins ; Proteome ; Proteomics ; Rats ; Rodents ; Scientific imaging ; Stress ; Stresses ; Thapsigargin ; Thapsigargin - pharmacology ; Thimet oligopeptidase ; Type 2 diabetes ; Venoms - pharmacology</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0120536-e0120536</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Kim et al 2015 Kim et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9c561ecb807c6e08930c08b9ea3425b075809fd4c71bc2504e6a5aea914400523</citedby><cites>FETCH-LOGICAL-c692t-9c561ecb807c6e08930c08b9ea3425b075809fd4c71bc2504e6a5aea914400523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368701/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368701/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25793496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Obukhov, Alexander G</contributor><creatorcontrib>Kim, Mi-Kyung</creatorcontrib><creatorcontrib>Cho, Jin-Hwan</creatorcontrib><creatorcontrib>Lee, Jae-Jin</creatorcontrib><creatorcontrib>Son, Moon-Ho</creatorcontrib><creatorcontrib>Lee, Kong-Joo</creatorcontrib><title>Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Beta cell death caused by endoplasmic reticulum (ER) stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP)-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1) reversed by exenatide, 2) exaggerated by exenatide, and 3) unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3β, ε, and θ, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide.</description><subject>14-3-3 protein</subject><subject>14-3-3 Proteins - metabolism</subject><subject>Animals</subject><subject>Antidiabetics</subject><subject>Apoptosis</subject><subject>Beta cells</subject><subject>Calcium</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cell Death - drug effects</subject><subject>Cell Line</subject><subject>Comparative analysis</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - drug effects</subject><subject>GLP-1 receptor agonists</subject><subject>Glucagon</subject><subject>Glucagon-Like Peptide-1 Receptor - agonists</subject><subject>Glucose</subject><subject>Heat shock proteins</subject><subject>Hypoglycemic agents</subject><subject>Insulin</subject><subject>Insulinoma</subject><subject>Insulinoma - metabolism</subject><subject>Isoforms</subject><subject>Kinases</subject><subject>Mass spectrometry</subject><subject>Mortality</subject><subject>Neuroendocrine tumors</subject><subject>Oligopeptidase</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Peptides</subject><subject>Peptides - pharmacology</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacy</subject><subject>Phosphorylation</subject><subject>Prevention</subject><subject>Protein folding</subject><subject>Protein Interaction Maps</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Rodents</subject><subject>Scientific imaging</subject><subject>Stress</subject><subject>Stresses</subject><subject>Thapsigargin</subject><subject>Thapsigargin - pharmacology</subject><subject>Thimet oligopeptidase</subject><subject>Type 2 diabetes</subject><subject>Venoms - pharmacology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYmPwBggsTUIg0WLHjhNzgTRNY1Sq2LQBt9apc9J6SuNiO9N2y5PjrN3Uol2gXCRyvv-zj-2TZa8ZHTNesk9XrvcdtOOV63BMWU4LLp9k-0zxfCRzyp9ufe9lL0K4ogmppHye7eVFqbhQcj_7c-5dRLe0hkCy3QYbiGvI5PvliBEPkdgu9K3t3BKIwbYNn8nJBQnRYwgEmwZNDClZk7hAshpcJtprJN61OIjwBjuItsaPBMjp9HywosFVdJ7A3HU2xJfZswbagK8274Ps59eTH8ffRtOz08nx0XRkpMrjSJlCMjSzipZGIq0Up4ZWM4XARV7MaFlUVDW1MCWbmbygAiUUgKCYEKnynB9kb9feVeuC3mxf0ExKoTijSiRisiZqB1d65e0S_K12YPXdgPNzDT5a02JKKQM5BSwUCiMloCmgNE1VM1POkCfXl81s_WyJtcEuemh3pLt_OrvQc3etBZdVSVkSvN8IvPvdY4h6acNwBNCh6-_WLXMlWCkTevgP-nh1G2oOqQDbNS7NawapPhI5rwqVyypR40eo9NSYLkm6a41N4zuBDzuBxES8iXPoQ9CTy4v_Z89-7bLvttgFQhsXwbV9tK4Lu6BYg8a7EDw2D5vMqB5a5X439NAqetMqKfZm-4AeQve9wf8CvYYOJg</recordid><startdate>20150320</startdate><enddate>20150320</enddate><creator>Kim, Mi-Kyung</creator><creator>Cho, Jin-Hwan</creator><creator>Lee, Jae-Jin</creator><creator>Son, Moon-Ho</creator><creator>Lee, Kong-Joo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150320</creationdate><title>Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist</title><author>Kim, Mi-Kyung ; Cho, Jin-Hwan ; Lee, Jae-Jin ; Son, Moon-Ho ; Lee, Kong-Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9c561ecb807c6e08930c08b9ea3425b075809fd4c71bc2504e6a5aea914400523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14-3-3 protein</topic><topic>14-3-3 Proteins - metabolism</topic><topic>Animals</topic><topic>Antidiabetics</topic><topic>Apoptosis</topic><topic>Beta cells</topic><topic>Calcium</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cell Death - drug effects</topic><topic>Cell Line</topic><topic>Comparative analysis</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - drug effects</topic><topic>GLP-1 receptor agonists</topic><topic>Glucagon</topic><topic>Glucagon-Like Peptide-1 Receptor - agonists</topic><topic>Glucose</topic><topic>Heat shock proteins</topic><topic>Hypoglycemic agents</topic><topic>Insulin</topic><topic>Insulinoma</topic><topic>Insulinoma - metabolism</topic><topic>Isoforms</topic><topic>Kinases</topic><topic>Mass spectrometry</topic><topic>Mortality</topic><topic>Neuroendocrine tumors</topic><topic>Oligopeptidase</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Peptides</topic><topic>Peptides - pharmacology</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacy</topic><topic>Phosphorylation</topic><topic>Prevention</topic><topic>Protein folding</topic><topic>Protein Interaction Maps</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Rodents</topic><topic>Scientific imaging</topic><topic>Stress</topic><topic>Stresses</topic><topic>Thapsigargin</topic><topic>Thapsigargin - pharmacology</topic><topic>Thimet oligopeptidase</topic><topic>Type 2 diabetes</topic><topic>Venoms - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Mi-Kyung</creatorcontrib><creatorcontrib>Cho, Jin-Hwan</creatorcontrib><creatorcontrib>Lee, Jae-Jin</creatorcontrib><creatorcontrib>Son, Moon-Ho</creatorcontrib><creatorcontrib>Lee, Kong-Joo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Mi-Kyung</au><au>Cho, Jin-Hwan</au><au>Lee, Jae-Jin</au><au>Son, Moon-Ho</au><au>Lee, Kong-Joo</au><au>Obukhov, Alexander G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-20</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0120536</spage><epage>e0120536</epage><pages>e0120536-e0120536</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Beta cell death caused by endoplasmic reticulum (ER) stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP)-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1) reversed by exenatide, 2) exaggerated by exenatide, and 3) unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3β, ε, and θ, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25793496</pmid><doi>10.1371/journal.pone.0120536</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0120536-e0120536
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1664931094
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects 14-3-3 protein
14-3-3 Proteins - metabolism
Animals
Antidiabetics
Apoptosis
Beta cells
Calcium
Cell culture
Cell death
Cell Death - drug effects
Cell Line
Comparative analysis
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Endoplasmic reticulum
Endoplasmic Reticulum Stress - drug effects
GLP-1 receptor agonists
Glucagon
Glucagon-Like Peptide-1 Receptor - agonists
Glucose
Heat shock proteins
Hypoglycemic agents
Insulin
Insulinoma
Insulinoma - metabolism
Isoforms
Kinases
Mass spectrometry
Mortality
Neuroendocrine tumors
Oligopeptidase
Pancreatic Neoplasms - metabolism
Peptides
Peptides - pharmacology
Pharmaceutical sciences
Pharmacy
Phosphorylation
Prevention
Protein folding
Protein Interaction Maps
Protein Processing, Post-Translational - drug effects
Proteins
Proteome
Proteomics
Rats
Rodents
Scientific imaging
Stress
Stresses
Thapsigargin
Thapsigargin - pharmacology
Thimet oligopeptidase
Type 2 diabetes
Venoms - pharmacology
title Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20analysis%20of%20INS-1%20rat%20insulinoma%20cells:%20ER%20stress%20effects%20and%20the%20protective%20role%20of%20exenatide,%20a%20GLP-1%20receptor%20agonist&rft.jtitle=PloS%20one&rft.au=Kim,%20Mi-Kyung&rft.date=2015-03-20&rft.volume=10&rft.issue=3&rft.spage=e0120536&rft.epage=e0120536&rft.pages=e0120536-e0120536&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0120536&rft_dat=%3Cgale_plos_%3EA423859268%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664931094&rft_id=info:pmid/25793496&rft_galeid=A423859268&rft_doaj_id=oai_doaj_org_article_169ca20ae59e4c66aec5a7cf8d1c7be3&rfr_iscdi=true