A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics
Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. This study investigates the use of symbolic dynamics to a...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-03, Vol.10 (3), p.e0112940-e0112940 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0112940 |
---|---|
container_issue | 3 |
container_start_page | e0112940 |
container_title | PloS one |
container_volume | 10 |
creator | Yuan, Kai Liu, Jian Liu, Kaipei Tan, Tianyuan |
description | Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk.
This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors - device, structure, load and special operation - a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method.
Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic. |
doi_str_mv | 10.1371/journal.pone.0112940 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1664782484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423858881</galeid><doaj_id>oai_doaj_org_article_5cdb24a0c8794b0abe58f26514d2bcd3</doaj_id><sourcerecordid>A423858881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d5a586898048fa94632f55baf2e75d52bbfdf2ca6ba6b6ab43c83fb69ab434c93</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0RI7tuvsAqnaB1SaqLQCt9ax47TunLjESWH_HjfNpmaaELIlW8fPeY99_EbRa5SMUTpBn9aurSuw442r9DhBCGckeRIdoyzFI4aT9OnB_ih64f06SWjKGXseHWE64Rmn2XE0n8YLBRak1fG58U1tZNsYV8XfdPPb1TfxtfE38cUWbAtd_LKGUncnWwPx4raUzhoVn99WUBrlX0bPCrBev-rXk-jH5cX3s6-jq_mX2dn0aqRYhptRToFyFu6QEF5ARliKC0olFFhPaE6xlEVeYAVMhslAklTxtJAs222JytKT6O1ed2OdF30vvECMkQnHhJNAzPZE7mAtNrUpob4VDozoAq5eCqgbo6wWVOUSE0gUn2REJiA15QVmFJEcS5WnQetzX62Vpc6Vrpoa7EB0eFKZlVi6rSApYyhJgsCHXqB2v1rtG1Ear7S1UGnXdvemCBOc7mq9e4A-_rqeWkJ4gKkKF-qqnaiYBhlOOecoUONHqDByHT4rGKcwIT5I-DhICEyj_zRLaL0Xs8X1_7Pzn0P2_QG70mCblXe2s5ofgmQPqtp5X-vivskoETvf33VD7Hwvet-HtDeHH3SfdGf0AJw-0FWm6RwdOmLsv9X_AmJuEjY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664782484</pqid></control><display><type>article</type><title>A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yuan, Kai ; Liu, Jian ; Liu, Kaipei ; Tan, Tianyuan</creator><contributor>Aegerter, Christof Markus</contributor><creatorcontrib>Yuan, Kai ; Liu, Jian ; Liu, Kaipei ; Tan, Tianyuan ; Aegerter, Christof Markus</creatorcontrib><description>Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk.
This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors - device, structure, load and special operation - a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method.
Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0112940</identifier><identifier>PMID: 25789859</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Dynamic tests ; Dynamics ; Electric power ; Electric power distribution ; Electrical engineering ; Electricity distribution ; Electricity generation ; Entropy ; Evaluation ; Failure ; Faults ; Feasibility studies ; Methods ; Models, Theoretical ; Monte Carlo simulation ; Networks ; Neural networks ; Nuclear power plants ; Operators ; Researchers ; Risk analysis ; Risk Assessment ; Risk factors ; Time series ; Topology</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0112940-e0112940</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Yuan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Yuan et al 2015 Yuan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d5a586898048fa94632f55baf2e75d52bbfdf2ca6ba6b6ab43c83fb69ab434c93</citedby><cites>FETCH-LOGICAL-c692t-d5a586898048fa94632f55baf2e75d52bbfdf2ca6ba6b6ab43c83fb69ab434c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25789859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aegerter, Christof Markus</contributor><creatorcontrib>Yuan, Kai</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Liu, Kaipei</creatorcontrib><creatorcontrib>Tan, Tianyuan</creatorcontrib><title>A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk.
This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors - device, structure, load and special operation - a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method.
Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic.</description><subject>Algorithms</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Electric power</subject><subject>Electric power distribution</subject><subject>Electrical engineering</subject><subject>Electricity distribution</subject><subject>Electricity generation</subject><subject>Entropy</subject><subject>Evaluation</subject><subject>Failure</subject><subject>Faults</subject><subject>Feasibility studies</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Monte Carlo simulation</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nuclear power plants</subject><subject>Operators</subject><subject>Researchers</subject><subject>Risk analysis</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><subject>Time series</subject><subject>Topology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0RI7tuvsAqnaB1SaqLQCt9ax47TunLjESWH_HjfNpmaaELIlW8fPeY99_EbRa5SMUTpBn9aurSuw442r9DhBCGckeRIdoyzFI4aT9OnB_ih64f06SWjKGXseHWE64Rmn2XE0n8YLBRak1fG58U1tZNsYV8XfdPPb1TfxtfE38cUWbAtd_LKGUncnWwPx4raUzhoVn99WUBrlX0bPCrBev-rXk-jH5cX3s6-jq_mX2dn0aqRYhptRToFyFu6QEF5ARliKC0olFFhPaE6xlEVeYAVMhslAklTxtJAs222JytKT6O1ed2OdF30vvECMkQnHhJNAzPZE7mAtNrUpob4VDozoAq5eCqgbo6wWVOUSE0gUn2REJiA15QVmFJEcS5WnQetzX62Vpc6Vrpoa7EB0eFKZlVi6rSApYyhJgsCHXqB2v1rtG1Ear7S1UGnXdvemCBOc7mq9e4A-_rqeWkJ4gKkKF-qqnaiYBhlOOecoUONHqDByHT4rGKcwIT5I-DhICEyj_zRLaL0Xs8X1_7Pzn0P2_QG70mCblXe2s5ofgmQPqtp5X-vivskoETvf33VD7Hwvet-HtDeHH3SfdGf0AJw-0FWm6RwdOmLsv9X_AmJuEjY</recordid><startdate>20150319</startdate><enddate>20150319</enddate><creator>Yuan, Kai</creator><creator>Liu, Jian</creator><creator>Liu, Kaipei</creator><creator>Tan, Tianyuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150319</creationdate><title>A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics</title><author>Yuan, Kai ; Liu, Jian ; Liu, Kaipei ; Tan, Tianyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d5a586898048fa94632f55baf2e75d52bbfdf2ca6ba6b6ab43c83fb69ab434c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Electric power</topic><topic>Electric power distribution</topic><topic>Electrical engineering</topic><topic>Electricity distribution</topic><topic>Electricity generation</topic><topic>Entropy</topic><topic>Evaluation</topic><topic>Failure</topic><topic>Faults</topic><topic>Feasibility studies</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Monte Carlo simulation</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nuclear power plants</topic><topic>Operators</topic><topic>Researchers</topic><topic>Risk analysis</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><topic>Time series</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Kai</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Liu, Kaipei</creatorcontrib><creatorcontrib>Tan, Tianyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Kai</au><au>Liu, Jian</au><au>Liu, Kaipei</au><au>Tan, Tianyuan</au><au>Aegerter, Christof Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-19</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0112940</spage><epage>e0112940</epage><pages>e0112940-e0112940</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk.
This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors - device, structure, load and special operation - a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method.
Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25789859</pmid><doi>10.1371/journal.pone.0112940</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-03, Vol.10 (3), p.e0112940-e0112940 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1664782484 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Dynamic tests Dynamics Electric power Electric power distribution Electrical engineering Electricity distribution Electricity generation Entropy Evaluation Failure Faults Feasibility studies Methods Models, Theoretical Monte Carlo simulation Networks Neural networks Nuclear power plants Operators Researchers Risk analysis Risk Assessment Risk factors Time series Topology |
title | A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%20Distribution%20Network%20Risk%20Evaluation%20Framework%20via%20Symbolic%20Dynamics&rft.jtitle=PloS%20one&rft.au=Yuan,%20Kai&rft.date=2015-03-19&rft.volume=10&rft.issue=3&rft.spage=e0112940&rft.epage=e0112940&rft.pages=e0112940-e0112940&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0112940&rft_dat=%3Cgale_plos_%3EA423858881%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664782484&rft_id=info:pmid/25789859&rft_galeid=A423858881&rft_doaj_id=oai_doaj_org_article_5cdb24a0c8794b0abe58f26514d2bcd3&rfr_iscdi=true |