A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics

Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. This study investigates the use of symbolic dynamics to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0112940-e0112940
Hauptverfasser: Yuan, Kai, Liu, Jian, Liu, Kaipei, Tan, Tianyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0112940
container_issue 3
container_start_page e0112940
container_title PloS one
container_volume 10
creator Yuan, Kai
Liu, Jian
Liu, Kaipei
Tan, Tianyuan
description Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors - device, structure, load and special operation - a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic.
doi_str_mv 10.1371/journal.pone.0112940
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1664782484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423858881</galeid><doaj_id>oai_doaj_org_article_5cdb24a0c8794b0abe58f26514d2bcd3</doaj_id><sourcerecordid>A423858881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d5a586898048fa94632f55baf2e75d52bbfdf2ca6ba6b6ab43c83fb69ab434c93</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0RI7tuvsAqnaB1SaqLQCt9ax47TunLjESWH_HjfNpmaaELIlW8fPeY99_EbRa5SMUTpBn9aurSuw442r9DhBCGckeRIdoyzFI4aT9OnB_ih64f06SWjKGXseHWE64Rmn2XE0n8YLBRak1fG58U1tZNsYV8XfdPPb1TfxtfE38cUWbAtd_LKGUncnWwPx4raUzhoVn99WUBrlX0bPCrBev-rXk-jH5cX3s6-jq_mX2dn0aqRYhptRToFyFu6QEF5ARliKC0olFFhPaE6xlEVeYAVMhslAklTxtJAs222JytKT6O1ed2OdF30vvECMkQnHhJNAzPZE7mAtNrUpob4VDozoAq5eCqgbo6wWVOUSE0gUn2REJiA15QVmFJEcS5WnQetzX62Vpc6Vrpoa7EB0eFKZlVi6rSApYyhJgsCHXqB2v1rtG1Ear7S1UGnXdvemCBOc7mq9e4A-_rqeWkJ4gKkKF-qqnaiYBhlOOecoUONHqDByHT4rGKcwIT5I-DhICEyj_zRLaL0Xs8X1_7Pzn0P2_QG70mCblXe2s5ofgmQPqtp5X-vivskoETvf33VD7Hwvet-HtDeHH3SfdGf0AJw-0FWm6RwdOmLsv9X_AmJuEjY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664782484</pqid></control><display><type>article</type><title>A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yuan, Kai ; Liu, Jian ; Liu, Kaipei ; Tan, Tianyuan</creator><contributor>Aegerter, Christof Markus</contributor><creatorcontrib>Yuan, Kai ; Liu, Jian ; Liu, Kaipei ; Tan, Tianyuan ; Aegerter, Christof Markus</creatorcontrib><description>Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors - device, structure, load and special operation - a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0112940</identifier><identifier>PMID: 25789859</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Dynamic tests ; Dynamics ; Electric power ; Electric power distribution ; Electrical engineering ; Electricity distribution ; Electricity generation ; Entropy ; Evaluation ; Failure ; Faults ; Feasibility studies ; Methods ; Models, Theoretical ; Monte Carlo simulation ; Networks ; Neural networks ; Nuclear power plants ; Operators ; Researchers ; Risk analysis ; Risk Assessment ; Risk factors ; Time series ; Topology</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0112940-e0112940</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Yuan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Yuan et al 2015 Yuan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d5a586898048fa94632f55baf2e75d52bbfdf2ca6ba6b6ab43c83fb69ab434c93</citedby><cites>FETCH-LOGICAL-c692t-d5a586898048fa94632f55baf2e75d52bbfdf2ca6ba6b6ab43c83fb69ab434c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25789859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aegerter, Christof Markus</contributor><creatorcontrib>Yuan, Kai</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Liu, Kaipei</creatorcontrib><creatorcontrib>Tan, Tianyuan</creatorcontrib><title>A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors - device, structure, load and special operation - a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic.</description><subject>Algorithms</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Electric power</subject><subject>Electric power distribution</subject><subject>Electrical engineering</subject><subject>Electricity distribution</subject><subject>Electricity generation</subject><subject>Entropy</subject><subject>Evaluation</subject><subject>Failure</subject><subject>Faults</subject><subject>Feasibility studies</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Monte Carlo simulation</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nuclear power plants</subject><subject>Operators</subject><subject>Researchers</subject><subject>Risk analysis</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><subject>Time series</subject><subject>Topology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0RI7tuvsAqnaB1SaqLQCt9ax47TunLjESWH_HjfNpmaaELIlW8fPeY99_EbRa5SMUTpBn9aurSuw442r9DhBCGckeRIdoyzFI4aT9OnB_ih64f06SWjKGXseHWE64Rmn2XE0n8YLBRak1fG58U1tZNsYV8XfdPPb1TfxtfE38cUWbAtd_LKGUncnWwPx4raUzhoVn99WUBrlX0bPCrBev-rXk-jH5cX3s6-jq_mX2dn0aqRYhptRToFyFu6QEF5ARliKC0olFFhPaE6xlEVeYAVMhslAklTxtJAs222JytKT6O1ed2OdF30vvECMkQnHhJNAzPZE7mAtNrUpob4VDozoAq5eCqgbo6wWVOUSE0gUn2REJiA15QVmFJEcS5WnQetzX62Vpc6Vrpoa7EB0eFKZlVi6rSApYyhJgsCHXqB2v1rtG1Ear7S1UGnXdvemCBOc7mq9e4A-_rqeWkJ4gKkKF-qqnaiYBhlOOecoUONHqDByHT4rGKcwIT5I-DhICEyj_zRLaL0Xs8X1_7Pzn0P2_QG70mCblXe2s5ofgmQPqtp5X-vivskoETvf33VD7Hwvet-HtDeHH3SfdGf0AJw-0FWm6RwdOmLsv9X_AmJuEjY</recordid><startdate>20150319</startdate><enddate>20150319</enddate><creator>Yuan, Kai</creator><creator>Liu, Jian</creator><creator>Liu, Kaipei</creator><creator>Tan, Tianyuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150319</creationdate><title>A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics</title><author>Yuan, Kai ; Liu, Jian ; Liu, Kaipei ; Tan, Tianyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d5a586898048fa94632f55baf2e75d52bbfdf2ca6ba6b6ab43c83fb69ab434c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Electric power</topic><topic>Electric power distribution</topic><topic>Electrical engineering</topic><topic>Electricity distribution</topic><topic>Electricity generation</topic><topic>Entropy</topic><topic>Evaluation</topic><topic>Failure</topic><topic>Faults</topic><topic>Feasibility studies</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Monte Carlo simulation</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nuclear power plants</topic><topic>Operators</topic><topic>Researchers</topic><topic>Risk analysis</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><topic>Time series</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Kai</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Liu, Kaipei</creatorcontrib><creatorcontrib>Tan, Tianyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Kai</au><au>Liu, Jian</au><au>Liu, Kaipei</au><au>Tan, Tianyuan</au><au>Aegerter, Christof Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-19</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0112940</spage><epage>e0112940</epage><pages>e0112940-e0112940</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors - device, structure, load and special operation - a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25789859</pmid><doi>10.1371/journal.pone.0112940</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0112940-e0112940
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1664782484
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Dynamic tests
Dynamics
Electric power
Electric power distribution
Electrical engineering
Electricity distribution
Electricity generation
Entropy
Evaluation
Failure
Faults
Feasibility studies
Methods
Models, Theoretical
Monte Carlo simulation
Networks
Neural networks
Nuclear power plants
Operators
Researchers
Risk analysis
Risk Assessment
Risk factors
Time series
Topology
title A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%20Distribution%20Network%20Risk%20Evaluation%20Framework%20via%20Symbolic%20Dynamics&rft.jtitle=PloS%20one&rft.au=Yuan,%20Kai&rft.date=2015-03-19&rft.volume=10&rft.issue=3&rft.spage=e0112940&rft.epage=e0112940&rft.pages=e0112940-e0112940&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0112940&rft_dat=%3Cgale_plos_%3EA423858881%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664782484&rft_id=info:pmid/25789859&rft_galeid=A423858881&rft_doaj_id=oai_doaj_org_article_5cdb24a0c8794b0abe58f26514d2bcd3&rfr_iscdi=true