Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36)

Patients with diabetes are at high risk of death prior to reaching end-stage renal disease, but most models predicting the risk of kidney disease do not take this competing risk into account. We aimed to compare the performance of Cox regression and competing risk models for prediction of early- and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0120477-e0120477
Hauptverfasser: Riphagen, Ineke J, Kleefstra, Nanne, Drion, Iefke, Alkhalaf, Alaa, van Diepen, Merel, Cao, Qi, Groenier, Klaas H, Landman, Gijs W D, Navis, Gerjan, Bilo, Henk J G, Bakker, Stephan J L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0120477
container_issue 3
container_start_page e0120477
container_title PloS one
container_volume 10
creator Riphagen, Ineke J
Kleefstra, Nanne
Drion, Iefke
Alkhalaf, Alaa
van Diepen, Merel
Cao, Qi
Groenier, Klaas H
Landman, Gijs W D
Navis, Gerjan
Bilo, Henk J G
Bakker, Stephan J L
description Patients with diabetes are at high risk of death prior to reaching end-stage renal disease, but most models predicting the risk of kidney disease do not take this competing risk into account. We aimed to compare the performance of Cox regression and competing risk models for prediction of early- and late-stage renal complications in type 2 diabetes. Patients with type 2 diabetes participating in the observational ZODIAC study were included. Prediction models for (micro)albuminuria and 50% increase in serum creatinine (SCr) were developed using Cox regression and competing risk analyses. Model performance was assessed by discrimination and calibration. During a total follow-up period of 10 years, 183 out of 640 patients (28.6%) with normoalbuminuria developed (micro)albuminuria, and 22 patients (3.4%) died without developing (micro)albuminuria (i.e. experienced the competing event). Seventy-nine out of 1,143 patients (6.9%) reached the renal end point of 50% increase in SCr, while 219 (19.2%) died without developing the renal end point. Performance of the Cox and competing risk models predicting (micro)albuminuria was similar and differences in predicted risks were small. However, the Cox model increasingly overestimated the risk of increase in SCr in presence of a substantial number of competing events, while the performance of the competing risk model was quite good. In this study, we demonstrated that, in case of substantial numbers of competing events, it is important to account for the competing risk of death in renal risk prediction in patients with type 2 diabetes.
doi_str_mv 10.1371/journal.pone.0120477
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1663911835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A425390958</galeid><doaj_id>oai_doaj_org_article_62b8cc76d8f34f82bdfa2d6c523697d7</doaj_id><sourcerecordid>A425390958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a9f59f56aed516d18fa7ac0e0587c2ab3af28e1ecc19ff2eb39a19ce74c1fd3e3</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQLgty92LVJmrR9Iyzr08LBgk8vRAhpMtnN2jY1SdX79mZve8dW7oUkkDD5zX-SyUySPEXZHJECvdrZwXWimfe2g3mGcJYXxb3kFFUEzxjOyP2j_UnyyPtdllFSMvYwOcG0KGiO8tPk-9K2vXDG2y61Om0hbK3yqbYudRDl03j0I-0dKCODiZDp0l4EA13w6W8Ttmm46iHFqTKihgA-Pf-2frNaLGeEXTxOHmjReHgyrmfJl3dvPy8_zC7X71fLxeVMsgqHmag0jZMJUBQxhUotCiEzyGhZSCxqIjQuAYGUqNIaQ00qgSoJRS6RVgTIWfL8oNs31vMxMZ4jxkiFUEloJFYHQlmx470zrXBX3ArDrw3WbbhwwcgGOMN1KWXBVKlJrktcKy2wYpJiwqpCFVHr9RhtqFtQMqbCiWYiOj3pzJZv7C-eE4ZoXkWB81HA2Z8D-MBb4yU0jejADtf3zvOcZnSPvvgHvft1I7UR8QGm0zbGlXtRvsgxJVVW0TJS8zuoOBS0RsYq0ibaJw4XE4fIBPgTNmLwnq8-ffx_dv11yr48YrcgmrD1thn29eWnYH4ApbPeO9C3SUYZ3zfBTTb4vgn42ATR7dnxB9063VQ9-QubAAGI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663911835</pqid></control><display><type>article</type><title>Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Riphagen, Ineke J ; Kleefstra, Nanne ; Drion, Iefke ; Alkhalaf, Alaa ; van Diepen, Merel ; Cao, Qi ; Groenier, Klaas H ; Landman, Gijs W D ; Navis, Gerjan ; Bilo, Henk J G ; Bakker, Stephan J L</creator><contributor>Reboldi, Gianpaolo</contributor><creatorcontrib>Riphagen, Ineke J ; Kleefstra, Nanne ; Drion, Iefke ; Alkhalaf, Alaa ; van Diepen, Merel ; Cao, Qi ; Groenier, Klaas H ; Landman, Gijs W D ; Navis, Gerjan ; Bilo, Henk J G ; Bakker, Stephan J L ; Reboldi, Gianpaolo</creatorcontrib><description>Patients with diabetes are at high risk of death prior to reaching end-stage renal disease, but most models predicting the risk of kidney disease do not take this competing risk into account. We aimed to compare the performance of Cox regression and competing risk models for prediction of early- and late-stage renal complications in type 2 diabetes. Patients with type 2 diabetes participating in the observational ZODIAC study were included. Prediction models for (micro)albuminuria and 50% increase in serum creatinine (SCr) were developed using Cox regression and competing risk analyses. Model performance was assessed by discrimination and calibration. During a total follow-up period of 10 years, 183 out of 640 patients (28.6%) with normoalbuminuria developed (micro)albuminuria, and 22 patients (3.4%) died without developing (micro)albuminuria (i.e. experienced the competing event). Seventy-nine out of 1,143 patients (6.9%) reached the renal end point of 50% increase in SCr, while 219 (19.2%) died without developing the renal end point. Performance of the Cox and competing risk models predicting (micro)albuminuria was similar and differences in predicted risks were small. However, the Cox model increasingly overestimated the risk of increase in SCr in presence of a substantial number of competing events, while the performance of the competing risk model was quite good. In this study, we demonstrated that, in case of substantial numbers of competing events, it is important to account for the competing risk of death in renal risk prediction in patients with type 2 diabetes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0120477</identifier><identifier>PMID: 25775414</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Angina pectoris ; Angioplasty ; Biomarkers - blood ; Biomarkers - urine ; Calibration ; Care and treatment ; Chronic kidney failure ; Comparative analysis ; Complications ; Creatinine ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - complications ; Diabetic Nephropathies - blood ; Diabetic Nephropathies - diagnosis ; Diabetic Nephropathies - urine ; Disease prevention ; End-stage renal disease ; Epidemiology ; Family medical history ; Female ; Glucose ; Health risks ; Hemoglobin ; Humans ; Internal medicine ; Kidney diseases ; Male ; Mathematical models ; Medical prognosis ; Medicine ; Methods ; Middle Aged ; Nephrology ; Patients ; Prediction models ; Predictive Value of Tests ; Proportional Hazards Models ; Regression analysis ; Risk ; Risk assessment ; Risk factors ; Type 2 diabetes ; Zodiac</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0120477-e0120477</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Riphagen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Riphagen et al 2015 Riphagen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a9f59f56aed516d18fa7ac0e0587c2ab3af28e1ecc19ff2eb39a19ce74c1fd3e3</citedby><cites>FETCH-LOGICAL-c692t-a9f59f56aed516d18fa7ac0e0587c2ab3af28e1ecc19ff2eb39a19ce74c1fd3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361549/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361549/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25775414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reboldi, Gianpaolo</contributor><creatorcontrib>Riphagen, Ineke J</creatorcontrib><creatorcontrib>Kleefstra, Nanne</creatorcontrib><creatorcontrib>Drion, Iefke</creatorcontrib><creatorcontrib>Alkhalaf, Alaa</creatorcontrib><creatorcontrib>van Diepen, Merel</creatorcontrib><creatorcontrib>Cao, Qi</creatorcontrib><creatorcontrib>Groenier, Klaas H</creatorcontrib><creatorcontrib>Landman, Gijs W D</creatorcontrib><creatorcontrib>Navis, Gerjan</creatorcontrib><creatorcontrib>Bilo, Henk J G</creatorcontrib><creatorcontrib>Bakker, Stephan J L</creatorcontrib><title>Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Patients with diabetes are at high risk of death prior to reaching end-stage renal disease, but most models predicting the risk of kidney disease do not take this competing risk into account. We aimed to compare the performance of Cox regression and competing risk models for prediction of early- and late-stage renal complications in type 2 diabetes. Patients with type 2 diabetes participating in the observational ZODIAC study were included. Prediction models for (micro)albuminuria and 50% increase in serum creatinine (SCr) were developed using Cox regression and competing risk analyses. Model performance was assessed by discrimination and calibration. During a total follow-up period of 10 years, 183 out of 640 patients (28.6%) with normoalbuminuria developed (micro)albuminuria, and 22 patients (3.4%) died without developing (micro)albuminuria (i.e. experienced the competing event). Seventy-nine out of 1,143 patients (6.9%) reached the renal end point of 50% increase in SCr, while 219 (19.2%) died without developing the renal end point. Performance of the Cox and competing risk models predicting (micro)albuminuria was similar and differences in predicted risks were small. However, the Cox model increasingly overestimated the risk of increase in SCr in presence of a substantial number of competing events, while the performance of the competing risk model was quite good. In this study, we demonstrated that, in case of substantial numbers of competing events, it is important to account for the competing risk of death in renal risk prediction in patients with type 2 diabetes.</description><subject>Adult</subject><subject>Aged</subject><subject>Angina pectoris</subject><subject>Angioplasty</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - urine</subject><subject>Calibration</subject><subject>Care and treatment</subject><subject>Chronic kidney failure</subject><subject>Comparative analysis</subject><subject>Complications</subject><subject>Creatinine</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetic Nephropathies - blood</subject><subject>Diabetic Nephropathies - diagnosis</subject><subject>Diabetic Nephropathies - urine</subject><subject>Disease prevention</subject><subject>End-stage renal disease</subject><subject>Epidemiology</subject><subject>Family medical history</subject><subject>Female</subject><subject>Glucose</subject><subject>Health risks</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Internal medicine</subject><subject>Kidney diseases</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Nephrology</subject><subject>Patients</subject><subject>Prediction models</subject><subject>Predictive Value of Tests</subject><subject>Proportional Hazards Models</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Risk assessment</subject><subject>Risk factors</subject><subject>Type 2 diabetes</subject><subject>Zodiac</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQLgty92LVJmrR9Iyzr08LBgk8vRAhpMtnN2jY1SdX79mZve8dW7oUkkDD5zX-SyUySPEXZHJECvdrZwXWimfe2g3mGcJYXxb3kFFUEzxjOyP2j_UnyyPtdllFSMvYwOcG0KGiO8tPk-9K2vXDG2y61Om0hbK3yqbYudRDl03j0I-0dKCODiZDp0l4EA13w6W8Ttmm46iHFqTKihgA-Pf-2frNaLGeEXTxOHmjReHgyrmfJl3dvPy8_zC7X71fLxeVMsgqHmag0jZMJUBQxhUotCiEzyGhZSCxqIjQuAYGUqNIaQ00qgSoJRS6RVgTIWfL8oNs31vMxMZ4jxkiFUEloJFYHQlmx470zrXBX3ArDrw3WbbhwwcgGOMN1KWXBVKlJrktcKy2wYpJiwqpCFVHr9RhtqFtQMqbCiWYiOj3pzJZv7C-eE4ZoXkWB81HA2Z8D-MBb4yU0jejADtf3zvOcZnSPvvgHvft1I7UR8QGm0zbGlXtRvsgxJVVW0TJS8zuoOBS0RsYq0ibaJw4XE4fIBPgTNmLwnq8-ffx_dv11yr48YrcgmrD1thn29eWnYH4ApbPeO9C3SUYZ3zfBTTb4vgn42ATR7dnxB9063VQ9-QubAAGI</recordid><startdate>20150316</startdate><enddate>20150316</enddate><creator>Riphagen, Ineke J</creator><creator>Kleefstra, Nanne</creator><creator>Drion, Iefke</creator><creator>Alkhalaf, Alaa</creator><creator>van Diepen, Merel</creator><creator>Cao, Qi</creator><creator>Groenier, Klaas H</creator><creator>Landman, Gijs W D</creator><creator>Navis, Gerjan</creator><creator>Bilo, Henk J G</creator><creator>Bakker, Stephan J L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150316</creationdate><title>Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36)</title><author>Riphagen, Ineke J ; Kleefstra, Nanne ; Drion, Iefke ; Alkhalaf, Alaa ; van Diepen, Merel ; Cao, Qi ; Groenier, Klaas H ; Landman, Gijs W D ; Navis, Gerjan ; Bilo, Henk J G ; Bakker, Stephan J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a9f59f56aed516d18fa7ac0e0587c2ab3af28e1ecc19ff2eb39a19ce74c1fd3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Angina pectoris</topic><topic>Angioplasty</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - urine</topic><topic>Calibration</topic><topic>Care and treatment</topic><topic>Chronic kidney failure</topic><topic>Comparative analysis</topic><topic>Complications</topic><topic>Creatinine</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetic Nephropathies - blood</topic><topic>Diabetic Nephropathies - diagnosis</topic><topic>Diabetic Nephropathies - urine</topic><topic>Disease prevention</topic><topic>End-stage renal disease</topic><topic>Epidemiology</topic><topic>Family medical history</topic><topic>Female</topic><topic>Glucose</topic><topic>Health risks</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Internal medicine</topic><topic>Kidney diseases</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Nephrology</topic><topic>Patients</topic><topic>Prediction models</topic><topic>Predictive Value of Tests</topic><topic>Proportional Hazards Models</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Risk assessment</topic><topic>Risk factors</topic><topic>Type 2 diabetes</topic><topic>Zodiac</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riphagen, Ineke J</creatorcontrib><creatorcontrib>Kleefstra, Nanne</creatorcontrib><creatorcontrib>Drion, Iefke</creatorcontrib><creatorcontrib>Alkhalaf, Alaa</creatorcontrib><creatorcontrib>van Diepen, Merel</creatorcontrib><creatorcontrib>Cao, Qi</creatorcontrib><creatorcontrib>Groenier, Klaas H</creatorcontrib><creatorcontrib>Landman, Gijs W D</creatorcontrib><creatorcontrib>Navis, Gerjan</creatorcontrib><creatorcontrib>Bilo, Henk J G</creatorcontrib><creatorcontrib>Bakker, Stephan J L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riphagen, Ineke J</au><au>Kleefstra, Nanne</au><au>Drion, Iefke</au><au>Alkhalaf, Alaa</au><au>van Diepen, Merel</au><au>Cao, Qi</au><au>Groenier, Klaas H</au><au>Landman, Gijs W D</au><au>Navis, Gerjan</au><au>Bilo, Henk J G</au><au>Bakker, Stephan J L</au><au>Reboldi, Gianpaolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-16</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0120477</spage><epage>e0120477</epage><pages>e0120477-e0120477</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Patients with diabetes are at high risk of death prior to reaching end-stage renal disease, but most models predicting the risk of kidney disease do not take this competing risk into account. We aimed to compare the performance of Cox regression and competing risk models for prediction of early- and late-stage renal complications in type 2 diabetes. Patients with type 2 diabetes participating in the observational ZODIAC study were included. Prediction models for (micro)albuminuria and 50% increase in serum creatinine (SCr) were developed using Cox regression and competing risk analyses. Model performance was assessed by discrimination and calibration. During a total follow-up period of 10 years, 183 out of 640 patients (28.6%) with normoalbuminuria developed (micro)albuminuria, and 22 patients (3.4%) died without developing (micro)albuminuria (i.e. experienced the competing event). Seventy-nine out of 1,143 patients (6.9%) reached the renal end point of 50% increase in SCr, while 219 (19.2%) died without developing the renal end point. Performance of the Cox and competing risk models predicting (micro)albuminuria was similar and differences in predicted risks were small. However, the Cox model increasingly overestimated the risk of increase in SCr in presence of a substantial number of competing events, while the performance of the competing risk model was quite good. In this study, we demonstrated that, in case of substantial numbers of competing events, it is important to account for the competing risk of death in renal risk prediction in patients with type 2 diabetes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25775414</pmid><doi>10.1371/journal.pone.0120477</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0120477-e0120477
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1663911835
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Aged
Angina pectoris
Angioplasty
Biomarkers - blood
Biomarkers - urine
Calibration
Care and treatment
Chronic kidney failure
Comparative analysis
Complications
Creatinine
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - complications
Diabetic Nephropathies - blood
Diabetic Nephropathies - diagnosis
Diabetic Nephropathies - urine
Disease prevention
End-stage renal disease
Epidemiology
Family medical history
Female
Glucose
Health risks
Hemoglobin
Humans
Internal medicine
Kidney diseases
Male
Mathematical models
Medical prognosis
Medicine
Methods
Middle Aged
Nephrology
Patients
Prediction models
Predictive Value of Tests
Proportional Hazards Models
Regression analysis
Risk
Risk assessment
Risk factors
Type 2 diabetes
Zodiac
title Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20methods%20for%20renal%20risk%20prediction%20in%20patients%20with%20type%202%20diabetes%20(ZODIAC-36)&rft.jtitle=PloS%20one&rft.au=Riphagen,%20Ineke%20J&rft.date=2015-03-16&rft.volume=10&rft.issue=3&rft.spage=e0120477&rft.epage=e0120477&rft.pages=e0120477-e0120477&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0120477&rft_dat=%3Cgale_plos_%3EA425390958%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1663911835&rft_id=info:pmid/25775414&rft_galeid=A425390958&rft_doaj_id=oai_doaj_org_article_62b8cc76d8f34f82bdfa2d6c523697d7&rfr_iscdi=true