Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China

Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0119082-e0119082
Hauptverfasser: Liu, Yu, Xi, Du-Gang, Li, Zhao-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0119082
container_issue 3
container_start_page e0119082
container_title PloS one
container_volume 10
creator Liu, Yu
Xi, Du-Gang
Li, Zhao-Liang
description Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.
doi_str_mv 10.1371/journal.pone.0119082
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1663346985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422026636</galeid><doaj_id>oai_doaj_org_article_856535ec3dbf424ca485efac3d323abb</doaj_id><sourcerecordid>A422026636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bbf648f1b475c4b1809caf11000037d5eff5deb873e88ddf42f61071b254bfe33</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYmoRAosWOEyflAmkaX5MmTRofEleW4xw37hw7s52O_jj-G27XTSvaBcmFY-d533N87JNlzwmeElqRdws3eivMdHAWppiQGa7zB9k-mdF8wnJMH9753suehLDAuKQ1Y4-zvbysWM1KvJ_9-QgRfK-tiNpZ5BSKHSA3RN0Lg6IX2mo7R4PXVurBABK2RdoOY0RL4bVoDIQ0R8JHrbTUSWRh9JshXjl_gXrXgkHK-Y1zo68ALswKyc4474ZuZcxEJH9otVyn8B4JJEUAFOLYrm4S-jVeauHQOQTwS6f9W3TcpZyfZo-UMAGebceD7MfnT9-Pv05Oz76cHB-dTiSb5XHSNIoVtSJNUZWyaEiNZ1IoQnB6aNWWoFTZQlNXFOq6bVWRK0ZwRZq8LBoFlB5kL699B-MC31Y-cMIYpQWb1WUiTq6J1okFT-XqhV9xJzTfLDg_5-sSSQO8LllJS5C0bVKkQoqiThmINKc5FU2TvD5so41ND60Em87B7Jju_rG643O35AUtZ6TEyeD11sC7yxFC5L0OEowRFty4ybvISYVZldDDf9D7d7el5iJtQFvlUly5NuVHRZ7jPKEsUdN7qPS20GuZrqnSaX1H8GZHkJgIv-NcjCHwk2_n_8-e_dxlX91hOxAmdsGZcX2_wi5YXIPSuxA8qNsiE8zXXXZTDb7uMr7tsiR7cfeAbkU3bUX_ApSpJsE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663346985</pqid></control><display><type>article</type><title>Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Yu ; Xi, Du-Gang ; Li, Zhao-Liang</creator><contributor>Brown, Kevin Scott</contributor><creatorcontrib>Liu, Yu ; Xi, Du-Gang ; Li, Zhao-Liang ; Brown, Kevin Scott</creatorcontrib><description>Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0119082</identifier><identifier>PMID: 25768650</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algae ; Algal blooms ; Aquatic ecosystems ; Artificial neural networks ; Atmospheric models ; Case reports ; Case studies ; China ; Chlorophyll ; Chlorophyll - chemistry ; Chlorophyll A ; Comparative analysis ; Correlation ; Correlation coefficient ; Correlation coefficients ; Drinking water ; Environmental Monitoring - methods ; Eutrophication ; Feasibility studies ; Fresh Water - analysis ; Meteorological Concepts ; Meteorological data ; Meteorology - methods ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; pH effects ; Potamogeton crispus ; Predictions ; Principal Component Analysis - methods ; Principal components analysis ; Quality management ; Regression analysis ; Regression models ; Reservoirs ; Reservoirs (Water) ; Sensitivity analysis ; Support vector machines ; Training ; Water Quality ; Water quality management ; Water resource management ; Weather</subject><ispartof>PloS one, 2015-03, Vol.10 (3), p.e0119082-e0119082</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Liu et al 2015 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bbf648f1b475c4b1809caf11000037d5eff5deb873e88ddf42f61071b254bfe33</citedby><cites>FETCH-LOGICAL-c692t-bbf648f1b475c4b1809caf11000037d5eff5deb873e88ddf42f61071b254bfe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359150/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359150/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25768650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Brown, Kevin Scott</contributor><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xi, Du-Gang</creatorcontrib><creatorcontrib>Li, Zhao-Liang</creatorcontrib><title>Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.</description><subject>Algae</subject><subject>Algal blooms</subject><subject>Aquatic ecosystems</subject><subject>Artificial neural networks</subject><subject>Atmospheric models</subject><subject>Case reports</subject><subject>Case studies</subject><subject>China</subject><subject>Chlorophyll</subject><subject>Chlorophyll - chemistry</subject><subject>Chlorophyll A</subject><subject>Comparative analysis</subject><subject>Correlation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Drinking water</subject><subject>Environmental Monitoring - methods</subject><subject>Eutrophication</subject><subject>Feasibility studies</subject><subject>Fresh Water - analysis</subject><subject>Meteorological Concepts</subject><subject>Meteorological data</subject><subject>Meteorology - methods</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>pH effects</subject><subject>Potamogeton crispus</subject><subject>Predictions</subject><subject>Principal Component Analysis - methods</subject><subject>Principal components analysis</subject><subject>Quality management</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Reservoirs</subject><subject>Reservoirs (Water)</subject><subject>Sensitivity analysis</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Water Quality</subject><subject>Water quality management</subject><subject>Water resource management</subject><subject>Weather</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYmoRAosWOEyflAmkaX5MmTRofEleW4xw37hw7s52O_jj-G27XTSvaBcmFY-d533N87JNlzwmeElqRdws3eivMdHAWppiQGa7zB9k-mdF8wnJMH9753suehLDAuKQ1Y4-zvbysWM1KvJ_9-QgRfK-tiNpZ5BSKHSA3RN0Lg6IX2mo7R4PXVurBABK2RdoOY0RL4bVoDIQ0R8JHrbTUSWRh9JshXjl_gXrXgkHK-Y1zo68ALswKyc4474ZuZcxEJH9otVyn8B4JJEUAFOLYrm4S-jVeauHQOQTwS6f9W3TcpZyfZo-UMAGebceD7MfnT9-Pv05Oz76cHB-dTiSb5XHSNIoVtSJNUZWyaEiNZ1IoQnB6aNWWoFTZQlNXFOq6bVWRK0ZwRZq8LBoFlB5kL699B-MC31Y-cMIYpQWb1WUiTq6J1okFT-XqhV9xJzTfLDg_5-sSSQO8LllJS5C0bVKkQoqiThmINKc5FU2TvD5so41ND60Em87B7Jju_rG643O35AUtZ6TEyeD11sC7yxFC5L0OEowRFty4ybvISYVZldDDf9D7d7el5iJtQFvlUly5NuVHRZ7jPKEsUdN7qPS20GuZrqnSaX1H8GZHkJgIv-NcjCHwk2_n_8-e_dxlX91hOxAmdsGZcX2_wi5YXIPSuxA8qNsiE8zXXXZTDb7uMr7tsiR7cfeAbkU3bUX_ApSpJsE</recordid><startdate>20150313</startdate><enddate>20150313</enddate><creator>Liu, Yu</creator><creator>Xi, Du-Gang</creator><creator>Li, Zhao-Liang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150313</creationdate><title>Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China</title><author>Liu, Yu ; Xi, Du-Gang ; Li, Zhao-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bbf648f1b475c4b1809caf11000037d5eff5deb873e88ddf42f61071b254bfe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algae</topic><topic>Algal blooms</topic><topic>Aquatic ecosystems</topic><topic>Artificial neural networks</topic><topic>Atmospheric models</topic><topic>Case reports</topic><topic>Case studies</topic><topic>China</topic><topic>Chlorophyll</topic><topic>Chlorophyll - chemistry</topic><topic>Chlorophyll A</topic><topic>Comparative analysis</topic><topic>Correlation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Drinking water</topic><topic>Environmental Monitoring - methods</topic><topic>Eutrophication</topic><topic>Feasibility studies</topic><topic>Fresh Water - analysis</topic><topic>Meteorological Concepts</topic><topic>Meteorological data</topic><topic>Meteorology - methods</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>pH effects</topic><topic>Potamogeton crispus</topic><topic>Predictions</topic><topic>Principal Component Analysis - methods</topic><topic>Principal components analysis</topic><topic>Quality management</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Reservoirs</topic><topic>Reservoirs (Water)</topic><topic>Sensitivity analysis</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Water Quality</topic><topic>Water quality management</topic><topic>Water resource management</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Xi, Du-Gang</creatorcontrib><creatorcontrib>Li, Zhao-Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu</au><au>Xi, Du-Gang</au><au>Li, Zhao-Liang</au><au>Brown, Kevin Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-03-13</date><risdate>2015</risdate><volume>10</volume><issue>3</issue><spage>e0119082</spage><epage>e0119082</epage><pages>e0119082-e0119082</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25768650</pmid><doi>10.1371/journal.pone.0119082</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-03, Vol.10 (3), p.e0119082-e0119082
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1663346985
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algae
Algal blooms
Aquatic ecosystems
Artificial neural networks
Atmospheric models
Case reports
Case studies
China
Chlorophyll
Chlorophyll - chemistry
Chlorophyll A
Comparative analysis
Correlation
Correlation coefficient
Correlation coefficients
Drinking water
Environmental Monitoring - methods
Eutrophication
Feasibility studies
Fresh Water - analysis
Meteorological Concepts
Meteorological data
Meteorology - methods
Models, Theoretical
Neural networks
Neural Networks, Computer
pH effects
Potamogeton crispus
Predictions
Principal Component Analysis - methods
Principal components analysis
Quality management
Regression analysis
Regression models
Reservoirs
Reservoirs (Water)
Sensitivity analysis
Support vector machines
Training
Water Quality
Water quality management
Water resource management
Weather
title Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20optimal%20training%20principle%20and%20input%20variables%20in%20artificial%20neural%20network%20model%20for%20the%20biweekly%20chlorophyll-a%20prediction:%20a%20case%20study%20of%20the%20Yuqiao%20Reservoir,%20China&rft.jtitle=PloS%20one&rft.au=Liu,%20Yu&rft.date=2015-03-13&rft.volume=10&rft.issue=3&rft.spage=e0119082&rft.epage=e0119082&rft.pages=e0119082-e0119082&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0119082&rft_dat=%3Cgale_plos_%3EA422026636%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1663346985&rft_id=info:pmid/25768650&rft_galeid=A422026636&rft_doaj_id=oai_doaj_org_article_856535ec3dbf424ca485efac3d323abb&rfr_iscdi=true