Involvement of CX3CL1/CX3CR1 signaling in spinal long term potentiation

The long-term potentiation (LTP) of spinal C-fiber-evoked field potentials is considered as a fundamental mechanism of central sensitization in the spinal cord. Accumulating evidence has showed the contribution of spinal microglia to spinal LTP and pathological pain. As a key signaling of neurons-mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-03, Vol.10 (3), p.e0118842-e0118842
Hauptverfasser: Bian, Chao, Zhao, Zhi-Qi, Zhang, Yu-Qiu, Lü, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The long-term potentiation (LTP) of spinal C-fiber-evoked field potentials is considered as a fundamental mechanism of central sensitization in the spinal cord. Accumulating evidence has showed the contribution of spinal microglia to spinal LTP and pathological pain. As a key signaling of neurons-microglia interactions, the involvement of CX3CL1/CX3CR1 signaling in pathological pain has also been investigated extensively. The present study examined whether CX3CL1/CX3CR1 signaling plays a role in spinal LTP. The results showed that 10-trains tetanic stimulation (100 Hz, 2s) of the sciatic nerve (TSS) produced a significant LTP of C-fiber-evoked field potentials lasting for over 3 h in the rat spinal dorsal horn. Blockade of CX3CL1/CX3CR1 signaling with an anti-CX3CR1 neutralizing antibody (CX3CR1 AB) markedly suppressed TSS-induced LTP. Exogenous CX3CL1 significantly potentiated 3-trains TSS-induced LTP in rats. Consistently, spinal LTP of C-fiber-evoked field potentials was also induced by TSS (100 Hz, 1s, 4 trains) in all C57BL/6 wild type (WT) mice. However, in CX3CR1-/- mice, TSS failed to induce LTP and behavioral hypersensitivity, confirming an essential role of CX3CR1 in spinal LTP induction. Furthermore, blockade of IL-18 or IL-23, the potential downstream factors of CX3CL1/CX3CR1 signaling, with IL-18 BP or anti-IL-23 neutralizing antibody (IL-23 AB), obviously suppressed spinal LTP in rats. These results suggest that CX3CL1/CX3CR1 signaling is involved in LTP of C-fiber-evoked field potentials in the rodent spinal dorsal horn.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0118842