Helical defects in microRNA influence protein binding by TAR RNA binding protein
MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal l...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-01, Vol.10 (1), p.e0116749-e0116749 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0116749 |
---|---|
container_issue | 1 |
container_start_page | e0116749 |
container_title | PloS one |
container_volume | 10 |
creator | Acevedo, Roderico Orench-Rivera, Nichole Quarles, Kaycee A Showalter, Scott A |
description | MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly.
We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding.
We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream. |
doi_str_mv | 10.1371/journal.pone.0116749 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1658107410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422696410</galeid><doaj_id>oai_doaj_org_article_a478c9bc94dc47b1a77361444d915ba7</doaj_id><sourcerecordid>A422696410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bcfe4b6f8bc1c1a2af21e6fb6c234fcfae3234d0043a2902fc35d593a7f52ddd3</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3LX6D0QHBNGL1nxNZnIjlEXdwuJKXb0NmeSkTUkndTIj7r833U6XjuyF5CKHk-e8Sc55s-wlRjNMS_xhE_q2UX62Cw3MEMa8ZOJRdo4FJVNOEH18Ep9lz2LcIFTQivOn2RkpOKoQQufZt0vwTiufG7Cgu5i7Jt863Ybl13mKre-h0ZDv2tBBOqpdY1yzyuvb_Ga-zPfQMTUgz7MnVvkIL4Z9kv34_Onm4nJ6df1lcTG_mmouSDettQVWc1vVGmusiLIEA7c114Qyq60CmgKDEKOKCESspoUpBFWlLYgxhk6y1wfdnQ9RDs2IEvOiwqhkGCVicSBMUBu5a91WtbcyKCfvEqFdSdV2TnuQipWVFrUWzGhW1liVJeWYMWYELmpVJq2Pw219vQWjoela5Uei45PGreUq_JaMIizSHCbZu0GgDb96iJ3cuqjBe9VA6O_eTahIs-IJffMP-vDvBmql0gfSpEK6V-9F5ZwRwgU_ULMHqLQMpCkn51iX8qOC96OCxHTwp1upPka5-L78f_b655h9e8KuQfluHYPvOxeaOAbZAUwejLEFe99kjOTe-MduyL3x5WD8VPbqdED3RUen0797wPyL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658107410</pqid></control><display><type>article</type><title>Helical defects in microRNA influence protein binding by TAR RNA binding protein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Acevedo, Roderico ; Orench-Rivera, Nichole ; Quarles, Kaycee A ; Showalter, Scott A</creator><contributor>Kashanchi, Fatah</contributor><creatorcontrib>Acevedo, Roderico ; Orench-Rivera, Nichole ; Quarles, Kaycee A ; Showalter, Scott A ; Kashanchi, Fatah</creatorcontrib><description>MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly.
We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding.
We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0116749</identifier><identifier>PMID: 25608000</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding Sites ; Biochemistry ; Cell growth ; Chemical properties ; Circular Dichroism ; Construction ; Defects ; Dichroism ; Double-stranded RNA ; Enzymes ; Gene expression ; Genes ; Humans ; Kinases ; Microprocessors ; MicroRNA ; MicroRNAs ; MicroRNAs - chemistry ; MicroRNAs - metabolism ; miRNA ; Models, Molecular ; Molecular biology ; Mutation ; Nucleic Acid Conformation ; Nucleotide sequence ; Positioning devices (machinery) ; Post-transcription ; Protein binding ; Protein expression ; Protein Structure, Tertiary ; Proteins ; Regulators ; Ribonuclease III - metabolism ; Ribonucleic acid ; RNA ; RNA-binding protein ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; RNA-induced silencing complex ; RNA-mediated interference ; Substrates</subject><ispartof>PloS one, 2015-01, Vol.10 (1), p.e0116749-e0116749</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Acevedo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Acevedo et al 2015 Acevedo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bcfe4b6f8bc1c1a2af21e6fb6c234fcfae3234d0043a2902fc35d593a7f52ddd3</citedby><cites>FETCH-LOGICAL-c692t-bcfe4b6f8bc1c1a2af21e6fb6c234fcfae3234d0043a2902fc35d593a7f52ddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301919/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4301919/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25608000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kashanchi, Fatah</contributor><creatorcontrib>Acevedo, Roderico</creatorcontrib><creatorcontrib>Orench-Rivera, Nichole</creatorcontrib><creatorcontrib>Quarles, Kaycee A</creatorcontrib><creatorcontrib>Showalter, Scott A</creatorcontrib><title>Helical defects in microRNA influence protein binding by TAR RNA binding protein</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly.
We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding.
We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream.</description><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Cell growth</subject><subject>Chemical properties</subject><subject>Circular Dichroism</subject><subject>Construction</subject><subject>Defects</subject><subject>Dichroism</subject><subject>Double-stranded RNA</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Humans</subject><subject>Kinases</subject><subject>Microprocessors</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - chemistry</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotide sequence</subject><subject>Positioning devices (machinery)</subject><subject>Post-transcription</subject><subject>Protein binding</subject><subject>Protein expression</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Regulators</subject><subject>Ribonuclease III - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>RNA-induced silencing complex</subject><subject>RNA-mediated interference</subject><subject>Substrates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3LX6D0QHBNGL1nxNZnIjlEXdwuJKXb0NmeSkTUkndTIj7r833U6XjuyF5CKHk-e8Sc55s-wlRjNMS_xhE_q2UX62Cw3MEMa8ZOJRdo4FJVNOEH18Ep9lz2LcIFTQivOn2RkpOKoQQufZt0vwTiufG7Cgu5i7Jt863Ybl13mKre-h0ZDv2tBBOqpdY1yzyuvb_Ga-zPfQMTUgz7MnVvkIL4Z9kv34_Onm4nJ6df1lcTG_mmouSDettQVWc1vVGmusiLIEA7c114Qyq60CmgKDEKOKCESspoUpBFWlLYgxhk6y1wfdnQ9RDs2IEvOiwqhkGCVicSBMUBu5a91WtbcyKCfvEqFdSdV2TnuQipWVFrUWzGhW1liVJeWYMWYELmpVJq2Pw219vQWjoela5Uei45PGreUq_JaMIizSHCbZu0GgDb96iJ3cuqjBe9VA6O_eTahIs-IJffMP-vDvBmql0gfSpEK6V-9F5ZwRwgU_ULMHqLQMpCkn51iX8qOC96OCxHTwp1upPka5-L78f_b655h9e8KuQfluHYPvOxeaOAbZAUwejLEFe99kjOTe-MduyL3x5WD8VPbqdED3RUen0797wPyL</recordid><startdate>20150121</startdate><enddate>20150121</enddate><creator>Acevedo, Roderico</creator><creator>Orench-Rivera, Nichole</creator><creator>Quarles, Kaycee A</creator><creator>Showalter, Scott A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150121</creationdate><title>Helical defects in microRNA influence protein binding by TAR RNA binding protein</title><author>Acevedo, Roderico ; Orench-Rivera, Nichole ; Quarles, Kaycee A ; Showalter, Scott A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bcfe4b6f8bc1c1a2af21e6fb6c234fcfae3234d0043a2902fc35d593a7f52ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Cell growth</topic><topic>Chemical properties</topic><topic>Circular Dichroism</topic><topic>Construction</topic><topic>Defects</topic><topic>Dichroism</topic><topic>Double-stranded RNA</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Humans</topic><topic>Kinases</topic><topic>Microprocessors</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - chemistry</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotide sequence</topic><topic>Positioning devices (machinery)</topic><topic>Post-transcription</topic><topic>Protein binding</topic><topic>Protein expression</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Regulators</topic><topic>Ribonuclease III - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>RNA-induced silencing complex</topic><topic>RNA-mediated interference</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acevedo, Roderico</creatorcontrib><creatorcontrib>Orench-Rivera, Nichole</creatorcontrib><creatorcontrib>Quarles, Kaycee A</creatorcontrib><creatorcontrib>Showalter, Scott A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acevedo, Roderico</au><au>Orench-Rivera, Nichole</au><au>Quarles, Kaycee A</au><au>Showalter, Scott A</au><au>Kashanchi, Fatah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helical defects in microRNA influence protein binding by TAR RNA binding protein</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-01-21</date><risdate>2015</risdate><volume>10</volume><issue>1</issue><spage>e0116749</spage><epage>e0116749</epage><pages>e0116749-e0116749</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly.
We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding.
We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25608000</pmid><doi>10.1371/journal.pone.0116749</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-01, Vol.10 (1), p.e0116749-e0116749 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1658107410 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Binding Sites Biochemistry Cell growth Chemical properties Circular Dichroism Construction Defects Dichroism Double-stranded RNA Enzymes Gene expression Genes Humans Kinases Microprocessors MicroRNA MicroRNAs MicroRNAs - chemistry MicroRNAs - metabolism miRNA Models, Molecular Molecular biology Mutation Nucleic Acid Conformation Nucleotide sequence Positioning devices (machinery) Post-transcription Protein binding Protein expression Protein Structure, Tertiary Proteins Regulators Ribonuclease III - metabolism Ribonucleic acid RNA RNA-binding protein RNA-Binding Proteins - chemistry RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism RNA-induced silencing complex RNA-mediated interference Substrates |
title | Helical defects in microRNA influence protein binding by TAR RNA binding protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helical%20defects%20in%20microRNA%20influence%20protein%20binding%20by%20TAR%20RNA%20binding%20protein&rft.jtitle=PloS%20one&rft.au=Acevedo,%20Roderico&rft.date=2015-01-21&rft.volume=10&rft.issue=1&rft.spage=e0116749&rft.epage=e0116749&rft.pages=e0116749-e0116749&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0116749&rft_dat=%3Cgale_plos_%3EA422696410%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658107410&rft_id=info:pmid/25608000&rft_galeid=A422696410&rft_doaj_id=oai_doaj_org_article_a478c9bc94dc47b1a77361444d915ba7&rfr_iscdi=true |