Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments
Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD) of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, prevent...
Gespeichert in:
Veröffentlicht in: | PloS one 2015-02, Vol.10 (2), p.e0117722-e0117722 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0117722 |
---|---|
container_issue | 2 |
container_start_page | e0117722 |
container_title | PloS one |
container_volume | 10 |
creator | Kepten, Eldad Weron, Aleksander Sikora, Grzegorz Burnecki, Krzysztof Garini, Yuval |
description | Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD) of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator. |
doi_str_mv | 10.1371/journal.pone.0117722 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1658064563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A422026205</galeid><doaj_id>oai_doaj_org_article_066c16d4b41d466a8da6d5f046922a12</doaj_id><sourcerecordid>A422026205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-583cc39e58227db1bd5d48cba5d36a7e69608bb58cd523a60596ba1f0926d1733</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLk0mfZFWBZdBxYWvL2G0yTtZE2bbpLKil_e1OkuU9kHyUPC6e_8e65Z9hyjNaYb_O7Kjb4Hux5cr9cI482GkAfZMa4oWXGC6MOD91H2JIQrhBgtOX-cHRHGS4R4dZz9Ph-N0tb0OuSN83nc6bwxMZq-zV2TQ-86sG4MuTJNMwbj-rzT0OfhegSvkzUMFqTudB_z1sOwSzLedXlIAlbnA_hoZHpED_LHJKpvBu3NxIen2aMGbNDP5vsk-_bxw9ezT6uLy_Pt2enFSvKKxBUrqZS00qwkZKNqXCumilLWwBTlsNG84qisa1ZKxQgFjljFa8ANqghXeEPpSfZyrztYF8RctyAwZyXiBeMTsd0TysGVGFJ84H8JB0b8NTjfijkRgTiXmKuiLrAqOIdSAVesQUWKlQAmSev9_Lex7rSSKVMPdiG6_NKbnWjdT1FQWjA8BfNmFvDuetQhis4Eqa2FXqdOTHFzVDBU4oS--ge9P7uZaiElYPrGTd2YRMVpQQgiaURYotb3UOko3RmZhqwxyb5weLtwSEzUN7GFMQSx_fL5_9nL70v29QG702DjLjg7xjR8YQkWe1B6F4LXzV2RMRLTjtxWQ0w7IuYdSW4vDht053S7FPQPIloNRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658064563</pqid></control><display><type>article</type><title>Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kepten, Eldad ; Weron, Aleksander ; Sikora, Grzegorz ; Burnecki, Krzysztof ; Garini, Yuval</creator><contributor>Levy, Yaakov Koby</contributor><creatorcontrib>Kepten, Eldad ; Weron, Aleksander ; Sikora, Grzegorz ; Burnecki, Krzysztof ; Garini, Yuval ; Levy, Yaakov Koby</creatorcontrib><description>Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD) of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0117722</identifier><identifier>PMID: 25680069</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biophysics ; Brownian motion ; Brownian movements ; Complex systems ; Computer science ; Economic models ; Ergodic processes ; Guidelines ; Mathematics ; Models, Theoretical ; Nanotechnology ; Normal distribution ; Particle tracking ; Physics ; Statistical mechanics ; Stochastic models</subject><ispartof>PloS one, 2015-02, Vol.10 (2), p.e0117722-e0117722</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Kepten et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Kepten et al 2015 Kepten et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-583cc39e58227db1bd5d48cba5d36a7e69608bb58cd523a60596ba1f0926d1733</citedby><cites>FETCH-LOGICAL-c692t-583cc39e58227db1bd5d48cba5d36a7e69608bb58cd523a60596ba1f0926d1733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334513/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334513/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25680069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Levy, Yaakov Koby</contributor><creatorcontrib>Kepten, Eldad</creatorcontrib><creatorcontrib>Weron, Aleksander</creatorcontrib><creatorcontrib>Sikora, Grzegorz</creatorcontrib><creatorcontrib>Burnecki, Krzysztof</creatorcontrib><creatorcontrib>Garini, Yuval</creatorcontrib><title>Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD) of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.</description><subject>Algorithms</subject><subject>Biophysics</subject><subject>Brownian motion</subject><subject>Brownian movements</subject><subject>Complex systems</subject><subject>Computer science</subject><subject>Economic models</subject><subject>Ergodic processes</subject><subject>Guidelines</subject><subject>Mathematics</subject><subject>Models, Theoretical</subject><subject>Nanotechnology</subject><subject>Normal distribution</subject><subject>Particle tracking</subject><subject>Physics</subject><subject>Statistical mechanics</subject><subject>Stochastic models</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLk0mfZFWBZdBxYWvL2G0yTtZE2bbpLKil_e1OkuU9kHyUPC6e_8e65Z9hyjNaYb_O7Kjb4Hux5cr9cI482GkAfZMa4oWXGC6MOD91H2JIQrhBgtOX-cHRHGS4R4dZz9Ph-N0tb0OuSN83nc6bwxMZq-zV2TQ-86sG4MuTJNMwbj-rzT0OfhegSvkzUMFqTudB_z1sOwSzLedXlIAlbnA_hoZHpED_LHJKpvBu3NxIen2aMGbNDP5vsk-_bxw9ezT6uLy_Pt2enFSvKKxBUrqZS00qwkZKNqXCumilLWwBTlsNG84qisa1ZKxQgFjljFa8ANqghXeEPpSfZyrztYF8RctyAwZyXiBeMTsd0TysGVGFJ84H8JB0b8NTjfijkRgTiXmKuiLrAqOIdSAVesQUWKlQAmSev9_Lex7rSSKVMPdiG6_NKbnWjdT1FQWjA8BfNmFvDuetQhis4Eqa2FXqdOTHFzVDBU4oS--ge9P7uZaiElYPrGTd2YRMVpQQgiaURYotb3UOko3RmZhqwxyb5weLtwSEzUN7GFMQSx_fL5_9nL70v29QG702DjLjg7xjR8YQkWe1B6F4LXzV2RMRLTjtxWQ0w7IuYdSW4vDht053S7FPQPIloNRw</recordid><startdate>20150213</startdate><enddate>20150213</enddate><creator>Kepten, Eldad</creator><creator>Weron, Aleksander</creator><creator>Sikora, Grzegorz</creator><creator>Burnecki, Krzysztof</creator><creator>Garini, Yuval</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150213</creationdate><title>Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments</title><author>Kepten, Eldad ; Weron, Aleksander ; Sikora, Grzegorz ; Burnecki, Krzysztof ; Garini, Yuval</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-583cc39e58227db1bd5d48cba5d36a7e69608bb58cd523a60596ba1f0926d1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biophysics</topic><topic>Brownian motion</topic><topic>Brownian movements</topic><topic>Complex systems</topic><topic>Computer science</topic><topic>Economic models</topic><topic>Ergodic processes</topic><topic>Guidelines</topic><topic>Mathematics</topic><topic>Models, Theoretical</topic><topic>Nanotechnology</topic><topic>Normal distribution</topic><topic>Particle tracking</topic><topic>Physics</topic><topic>Statistical mechanics</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kepten, Eldad</creatorcontrib><creatorcontrib>Weron, Aleksander</creatorcontrib><creatorcontrib>Sikora, Grzegorz</creatorcontrib><creatorcontrib>Burnecki, Krzysztof</creatorcontrib><creatorcontrib>Garini, Yuval</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kepten, Eldad</au><au>Weron, Aleksander</au><au>Sikora, Grzegorz</au><au>Burnecki, Krzysztof</au><au>Garini, Yuval</au><au>Levy, Yaakov Koby</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-02-13</date><risdate>2015</risdate><volume>10</volume><issue>2</issue><spage>e0117722</spage><epage>e0117722</epage><pages>e0117722-e0117722</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD) of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25680069</pmid><doi>10.1371/journal.pone.0117722</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2015-02, Vol.10 (2), p.e0117722-e0117722 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1658064563 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Biophysics Brownian motion Brownian movements Complex systems Computer science Economic models Ergodic processes Guidelines Mathematics Models, Theoretical Nanotechnology Normal distribution Particle tracking Physics Statistical mechanics Stochastic models |
title | Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guidelines%20for%20the%20fitting%20of%20anomalous%20diffusion%20mean%20square%20displacement%20graphs%20from%20single%20particle%20tracking%20experiments&rft.jtitle=PloS%20one&rft.au=Kepten,%20Eldad&rft.date=2015-02-13&rft.volume=10&rft.issue=2&rft.spage=e0117722&rft.epage=e0117722&rft.pages=e0117722-e0117722&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0117722&rft_dat=%3Cgale_plos_%3EA422026205%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658064563&rft_id=info:pmid/25680069&rft_galeid=A422026205&rft_doaj_id=oai_doaj_org_article_066c16d4b41d466a8da6d5f046922a12&rfr_iscdi=true |